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Inhaling a complex chemical mixture of combustion compounds in tobacco smoke causes adverse health effects, 
particularly cancer, cardiovascular, and pulmonary diseases. Therefore, patient smoking can be used as an 
important basis for clinical diagnosis. In this study, a model for predicting the individual smoking behavior based 
on an artificial neural network and expiratory mass spectrometry was proposed. The exhalation data of 1,119 
volunteers were collected using proton transfer reaction mass spectrometry. The exhalation data contained the 
information on m/z 20-150. A logic regression algorithm was used to analyze the signal intensity data 
corresponding to the m/z in each column. The results showed that m/z with a greater correlation with smoking 
were 42, 67, 83, and 97. A nonlinear relationship model between the characteristic data and smoking behavior 
was constructed by using a fully connected neural network. Thus, the corresponding smoking behavior prediction 
model was developed. The model was then trained and tested many times, and the final smoking behavior 
prediction model with an accuracy of 95.089% was established. Comparing to the traditional questionnaire survey 
and conventional logistic regression methods, the proposed method has higher reliability, shorter detection 
period, lower detection cost, and higher accuracy. This method can play an important role in disease prevention, 
medical diagnostics, and evidence collection.  
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Introduction 
 
Research shows that smoking seriously 
endangers all the organs of the human body, 
causes many diseases, affects the overall health 
of a person, and reduces life expectancy [1]. 
Smoking not only leads to various cardiovascular 
[2] and respiratory diseases [3], but also causes 

sexual dysfunction and fertility reduction [4]. 
Smoking can also cause cancer and prevent the 
body from resisting cancer [5]. In addition, 
smoking affects the health of bones and teeth [1], 
leading to series of problems such as 
inflammation [6] and decreased immune 
function [7]. The harm caused by smoking is well 
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known to people and has aroused broad 
concerns globally. 
 
The diseases caused by using tobacco are among 
the largest global public health threats. 
Therefore, many health departments over the 
world have mandated smoking cessation to help 
smoking addicts quit smoking. In the process of 
quitting smoking, frequently determination of 
the smoking status and monitoring the effects of 
smoking cessation are required. In addition, the 
medical insurance industry needs to determine 
whether an insured's illness has been caused by 
smoking. When a criminal case occurs, cigarette 
or second-hand cigarette residues and other 
relevant evidence are often left behind at the 
scene of the crime. Forensic laboratories need to 
make an objective determination of smoking and 
determine the person at the scene of the crime, 
so as to identify the suspect [8]. 
 
The most commonly used method for smoking 
determination is a questionnaire survey [9], in 
which reliability often depends on the attitude of 
the respondents and the spirit of seeking the 
truth from the facts. The more accurate method 
to identify whether the tester smokes is to 
measure nicotine and cotinine levels in the 
plasma, urine, and saliva of the tester [10, 11]. 
The concentration of nicotine and cotinine in the 
biological samples (such as urine, blood, and 
saliva) of a smoker is at least 2-3 times higher 
than that in a nonsmoker. Therefore, it has been 
proved that it is reasonable to use such biological 
samples as a biomarker to determine smoking 
[12]. Specific analytical methods include 
immunoassay [13], high-performance liquid 
chromatography [14], and gas chromatography 
[11]. However, these analytical methods are 
time-consuming and require a large number of 
samples, specialized laboratories, and trained 
personnel [8]. In addition, there was a cross 
reaction and a lack of specificity in immunoassay 
[15]. In recent years, researchers have attempted 
to analyze abnormal methylation of smoking-
related genes in order to identify smoking 
behavior [16]. Deoxyribonucleic acid methylation 
is a potential mechanistic link between current 

smoking and cancer as well as prenatal cigarette-
smoke exposure and the development of adult 
chronic diseases. The genetic analysis of gene 
methylation may provide some clues for smoking 
identification. However, there are too many 
factors that may cause gene methylation, and 
smoking is not the only one or even one of the 
top causes [17]. Therefore, genome sequencing 
for methylation evaluation cannot be the method 
for screening the smoking situation. 
 
Breath detection has become a new method for 
identifying diseases or the metabolic state due to 
its convenience, speed, hygiene, and non-
invasiveness, and has attracted a lot of interest 
from international researchers. Although 
acetonitrile exhaled by smokers has been 
recognized internationally as one of the smoking 
markers [18], complete and accurate 
determination of whether an individual smokes 
or not is difficult by relying solely on acetonitrile. 
Mass spectrometry data, such as breath 
detection, also contains a large amount of 
information on components other than 
acetonitrile. If a comprehensive analysis is 
conducted, it is expected to improve the accuracy 
of smoking determination further. A fully 
connected (FC) neural network is suitable for 
handling complex nonlinear relationship data 
and can automatically learn and extract feature 
data from large amounts of data. 
 
In recent years, neural networks have quickly 
become a popular topic for disease analysis and 
prediction. For example, in medical imaging, 
neural networks are used to analyze images of 
breast cell nuclear grading [19], and in disease 
prediction, a back propagation (BP) neural 
network was used to predict the trend of the 
Severe Acute Respiratory Syndrome epidemic 
[20]. In terms of air quality prediction, a long 
short-term memory-FC neural network model 
was used to predict the PM2.5 pollution index at 
an air-quality monitoring station, and the 
prediction performance of this model was great 
[21]. 
 
In this study,   we applied the breath component 
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Table 1. Characteristics of the subject groups (Age is quoted as a median). 
 

  Train Test  

  Smokers Nonsmokers Ex-smokers Smokers Nonsmokers Ex-smokers Total 

Male 
Age 35(21-80) 30(23-87) 31(56-62) 32.5(22-57) 27(19-63) 41 33(19-87) 
No. 176 445 18 40 120 1 800 

Women 
Age 65(39-66) 35(23-82) 38.5(33-44) 27 27(20-62) 27.5(27-28) 34(20-82) 
No. 3 251 2 1 60 2 319 

All 
Age 35(21-80) 35(23-87) 41.5(24-79) 32(22-57) 27(19-63) 28(27-41) 33(19-87) 
No. 179 696 20 41 180 3 1119 

 
 
mass spectrometry data obtained through breath 
detection to establish a fast and accurate 
smoking prediction model based on the FC neural 
network by processing the input eigenvalues of 
the nonlinear relationship to predict smoking 
behavior. The result of this study is expected to 
be a new reliable non-invasive method for 
predicting smoking. 
 
 

Materials and Methods 
 
In this study, breath data were collected from 
1,119 volunteers. 80% of breath data (895 
volunteers) were used to train the model, and 
20% of breath data (224 volunteers) were used as 
the prediction samples. The personal data and 
smoking status of the volunteers were recorded 
including age, gender, whether the volunteer 
smokes, smoking duration, time since quitting, 
and the number of cigarettes smoked per day. 
The specific volunteer information is shown in 
Table 1. 
 
The framework for predicting the smoking 
behavior by combining expiratory mass 
spectrometry with the FC neural network is 
shown in Figure 1. 
 
Acquisition of exhaled mass spectrometry data 
Breath detection was performed by using direct 
exhalation injection (breath sampling system) 
combined with proton transfer reaction mass 
spectrometry (PTR-MS) [22, 23]. The breath 
sampling system mainly included a disposable 
mouthpiece, a mass flow controller (MFC), a 
pressure controller, and two pumps (Pump1 and 

Pump2). As PTR-MS operates in the full-spectrum 
scanning mode (m/z 20-150, except m/z 37), one 
full scan takes 143 s, which is much longer than 
the breath duration of human being. Therefore, 
to ensure that the full-spectrum scanning was 
completed with only one breath, the following 
operations were performed on the sampling 
system. In the beginning of the experiment, the 
MFC was set to 500 mL/min. The experimental 
subject began to blow for 7 s, and the exhaled 
samples were brought into the sampling pipeline 
by Pump1. At this time, the MFC was closed, and 
blowing was stopped. Then, the breath sample 
stored in the sampling pipeline entered the PTR-
MS detector slowly under the action of the 
pressure gradient. By the end of this testing, the 
whole process time lasted more than 200 s, 
which met the requirement of full-spectrum 
scanning. PTR-MS devices included an ion source, 
a drift tube, and a mass spectrometry detection 
system [24, 25]. Water vapor entered the ion 
source and generated H3O+ by glow discharge. 
When the exhaled gas entered the drift tube, if 
the proton affinity of the volatile organic 
substance M in the breath was greater than that 
of water, a proton transfer reaction as Equation 
(1) occurred with the generated H3O+ and MH+, 
which entered the mass spectrometry, and the 
detection was completed. 
 

M+ + H3O+ → MH+ + H2O                (1) 

 
There are many volatile organic compounds 
(VOCs) in the exhaled gas of people. The target 
VOCs include acetonitrile, benzene, toluene, and 
2-methylpentane. Previous studies have shown 
that the concentrations of acetonitrile, benzene,  
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Figure 1. Framework for predicting the smoking behavior by combining exhalation mass spectrometry with a fully connected neural network. 

 
 
and other target VOCs in the exhaled air of 
smokers are significantly higher than that of 
nonsmokers. Thus, these VOCs can be used as 
biomarkers of smoking breath [18]. 
 
Statistical analysis 
Advanced statistical analysis including logistic 
regression classification was applied to select 
important features to be included in the training 
of the FC neural network models. A statistical 
significance test was conducted for the 
difference between nonsmokers and smokers by 
using Statistical Product and Service Solutions 
(SPSS) software (IBM Company, Armonk, New 
York, USA) through the Mann–Whitney U test.  
 
Data Processing 
The number of protons is represented by m, and 
the number of charges of ions is represented by 
z. The m/z is the ratio of protons divided by the 
number of charges, i.e., the charge-to-mass ratio. 
The horizontal axis in the mass spectrum is m/z. 
The m/z range of the scan was from 20 to 150, 
and the corresponding signal intensity was 
obtained.  
 
According to the specification of the neural 
network input data, the processed data were 
numerically processed. The volunteers only had 
two conditions: smoking or nonsmoking. The 
smoking and nonsmoking behaviors were 
indicated by 1 and 0, respectively. The numeric 

ones and zeros were used as learning labels for 
the neural networks. 
 
To ensure the prediction accuracy and avoid too 
long learning time of the neural network, data 
cleaning was required. First, the logistic 
regression method was used to calculate the 
parameters between each column of the data 
and smoking. Then, the correlation of the data 
was determined according to the size of the 
parameters, and the optimal feature dataset was 
finally obtained after cleaning the interference 
data. 
 
The classification of logistic regression is fast with 
less occupied memory, which is suitable for 
solving two-class problems. The parameters of 
each feature value can be directly obtained. The 
larger parameters indicate that the correlation 
between the feature data and the target 
classification is higher. A total of 80% of the 
exhaled m/z data collected from 1,119 
volunteers were used as the training samples for 
the logistic regression model, and the other 20% 
were used to test the classification accuracy of 
the logistic regression model. The study was 
conducted to determine whether the volunteer 
smokes; hence, the problem was a two-class 
problem with smoking or nonsmoking. 
 
For a single input x(i), there are: 
 

 z(i) = wTx(i) + b                                 (2) 
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A predictive function can be obtained: 
 

ŷ(i) = a(i) = sigmoid(z(i))                    (3) 

 
The corresponding loss function is: 
 
L(a(i), y(i)) = −y(i) log(a(i)) − (1−y(i)) log(1 − a(i))    (4) 

 
where y(i) is the true output corresponding to the 
input x(i). 
 
By taking the training sample of (5), the cost 
function is obtained: 
 

J =
1

m
∑ L(a(i), y(i))m

i=1                          (5) 

 
The minimum cost function was optimized by 
using the traditional gradient descent method, 
and the best parameters W and b were obtained. 
First, forward propagation and BP were 
performed. Then, the parameter was updated 
according to the partial derivative of each 
parameter obtained by BP. 
 
In forward propagation, for input X, the predicted 
value of logistic regression is: 
 
A = α(wTX + b) = (a(1), a(2), ⋯ , a(m−1), a(m))        (6) 
 
The cost function can be obtained from the 
training data and the predicted values: 
 

J = −
1

m
∑ y(i) log(a(i))

m

i=1

+ (1 − y(i)) log(1 − a(i))        (7) 

 
In BP: 
 

                 dW =
∂J

∂W
=

1

m
X(A − Y)T                    (8) 

 

                 db =
∂J

∂b
=

1

m
∑ (a(i) − y(i))m

i=1                 (9) 

 
The update parameters are: 
 
                 W = W − α ∗ dW                               (10) 
 
        b = b − α ∗ db (α was the learning rate) (11) 

BP neural network 
Because the exhalation data are one-
dimensional, traditional network models such as 
recurrent neural network and convolutional 
neural network cannot process the data well. 
Therefore, the traditional BP neural network was 
used to construct the smoking prediction model. 
The BP neural network classification prediction 
model is a supervised learning network, which is 
generally divided into an input layer, a hidden 
layer, and an output layer. Training and test data 
were input through the input layer, calculated by 
the hidden layer, and then the result was output 
by the output layer. The hidden layer is the core 
of the entire neural network. The algorithm of 
the hidden layer determines the role of the 
neural network. 
 
The maximum training times were 1,000, and the 
learning rate was 0.1. The error was set to 0.001. 
The classification result was only 0 or 1. When the 
output was smaller than 0.5 and greater than or 
equal to 0.5, it was rounded to 0 and 1, 
respectively. Therefore, the error range of 0.001 
did not affect the output. In learning the neural 
network model, the data corresponding to high 
weight m/z in exhaled gas were input from the 
input layer, and then a set of free weights was 
randomly selected as the initial weight between 
the input layer and hidden layer. The input of the 
hidden layer was obtained by using the initial 
input and initial weight: 
 
        Xhidden = Iinput ⋅ Winput−hidden              (12) 

 
Where Whidden is the input of the hidden layer, 
Iinput is the feature data from the input layer, and 
Winput-hidden is the weight between the input layer 
and hidden layer, which is updated with the 
weight of the hidden layer. 
 
The updated weights calculated by the 
Levenberg–Marquardt algorithm [26-28] were 
returned to equation (12), and the new Xhidden 
was calculated. Then, the actual output of the 
hidden layer was calculated by the S activation 
function. The Sigmoid function is expressed as 
follows [29]: 
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                   Sigmoid(x) =
1

1+𝑒−𝑥                           (13) 

 
            Ohidden = Sigmoid(Xhidden)                    (14) 
 
Ohidden is the output value of the hidden layer, and 
the predicted classification results of the output 
layer are calculated as follows: 
 
            Ooutput = Ohidden ⋅ Whidden                  (15) 

 
 
Where Whidden is the updated hidden layer 
weight. 
 
Fully connected neural network 
In order to improve the accuracy and precision of 
the model further, a smoking prediction model 
was constructed by using an FC neural network. 
In FC neural networks, adjacent network layers 
are FC to each other [30]. The neural network 
implemented in this research model has a three-
layer structure with an input layer, a hidden 
layer, and an output layer. The hidden layer 
extracts features and outputs the corresponding 
probability of smoking and nonsmoking from the 
output layer. The higher probability is taken as 
the final prediction output. 
 
In order to enhance the model ability to describe 
nonlinear features and accelerate training, the 
rectified linear unit (ReLU) function was used as 
the activation function instead of the common 
Sigmoid function. It has been reported that the 
commonly used sigmoidal element has the 
problem of vanishing gradient, which is usually 
accompanied by slow optimization convergence 
to a local minimum of difference [31]. The 
modified linear (ReLU) element solves this 
problem. When it is activated above 0, its partial 
derivative is 1. The ReLU function is defined as 
follows [32]: 
 

       0
Re ( ) max( ,0)

0   

x if x
LU x x

otherwise


= = 


           (16) 

 
As a one-sided piecewise linear function, the 
ReLU function changes all negative values to 0, 

whereas positive values remain unchanged. It 
does not force sign symmetry or antisymmetry. 
This operation is called one-sided suppression. 
Because of its unilateral inhibition, the neurons in 
the neural network also have sparse activation. 
The sparse model implemented by ReLU can 
better mine related features, improve training 
speed, and enhance fitting accuracy. When the 
Sigmoid function is used to calculate the 
activation value, the exponential calculation is 
needed. When the BP is used to calculate the 
error gradient, the derivation involves division, 
and the calculation amount is relatively large. As 
for the ReLU function, for accelerating the 
propagation, only the threshold value should be 
set. 
 
The weight of the hidden layer needs to be 
constantly updated to ensure the accuracy of the 
output. However, neural networks using 
traditional gradient descent algorithms often 
have the problem of local minimum. When the 
learning rate is too small or the activation 
function is very small, the update speed of 
weights and thresholds will decrease, and the 
convergence rate of the network will slow down. 
Thus, in the FC neural network model for 
predicting smoking, we used the Adam algorithm 
to calculate the weight of the hidden and output 
layers, rather than the traditional gradient 
descent algorithm. 
 
The Adam algorithm is a first-order optimization 
algorithm, which can replace the traditional 
random gradient descent process. It can update 
the neural network weight based on the training 
data iteratively [33]. The Adam algorithm designs 
independent adaptive learning rates for different 
parameters by calculating the first and second 
moment estimates of the gradient. The Adam 
algorithm combines the best features of the 
AdaGrad and RMSProp algorithms. It still 
provides optimization methods to solve sparse 
gradient and noise problems. Adam's algorithm 
tuning parameters are relatively simple, and the 
default parameters can handle most problems. It 
solves the problems of low convergence speed of 
traditional all connected neural networks and 



Journal of Biotech Research [ISSN: 1944-3285] 2020; 11: 97-110 

 

103 

 

falling into the local minimum. The calculation 
formulas are as follows: 
 
                       1t t= +                                             (17) 
 

                 1( )t t tg f  −=                                     (18) 

 

          1 1 1(1 )t t tm m g −= + −                            (19) 

 

         2

2 1 2(1 )t t tv v g −= + −                             (20) 

 
where β1, β2 are the exponential decay rates for 
the moment estimates. 
 
As mt and vt are initialized as 0 vectors, they will 
bias to 0 vectors if the attenuation rate is small. 
Therefore, bias correction is needed for mt and vt. 
The average weight of the corrected gradient is 

ˆ
tm , and the deviation of the corrected gradient 

is t̂v . The correction formulas are as follows: 

 

                         
1

ˆ / (1 )t

t tm m = −                     (21) 

 

                         
2

ˆ / (1 )t

t tv v = −                        (22) 

 
After the correction, the updated formula of the 
final Adam algorithm is as follow: 
 

                  
1

ˆ
ˆ

t t t

t

m
v


 


+ = −

+
                         (23) 

 
The good default settings for the tested machine 
learning problems are β1 = 0.9, β2 = 0.999, and ε 
= 10−8. All operations on vectors are elementwise. 
 
 

Results  
 
Mann–Whitney U test 
There was no significant difference in the mean 
values of the two independent populations from 
which H0 was assumed as 0 in the Mann–Whitney 
U test of the two independent samples. After the 
data were processed by SPSS, the p value was 
smaller than the significance level of 0.05 (P < 

0.05). The results showed that there was a 
significant difference between the expiratory 
data of nonsmokers and smokers.  
 
Logistic regression classification 
Considering only the relationship between 
smoking and each m/z, the data after the 
preliminary coarse screening included the 
smoking status of the volunteers and the 
intensity corresponding to each m/z. Figure 2 
shows the typical exhalation mass spectrometry 
information for the volunteers, including all mass 
spectral information for the m/z 20-150 (except 
37) range. 
 
The model parameters of smoking or not 
corresponding to m/z are shown in Figure 3. The 
model parameters returned by the logistic 
regression of m/z 38, 39, 40, 41, 42, 45, 55, 57, 
67, 68, 69, 83, and 97 were relatively large and 
were incorporated into the logistic regression 
model for prediction and classification. The data 
columns corresponding to m/z 38, 39, 40, 41, 45, 
55, and 68 had only one type of predicted result, 
which could not be correctly classified. 
Therefore, they were determined as irrelevant 
eigenvalues. The prediction results of m/z 57 and 
69 had lower accuracy and could not be used as 
eigenvalues. After eliminating the interference 
data, the data columns corresponding to m/z 42, 
67, 83, and 97 were determined as eigenvalues. 
The results of each feature column are shown in 
Figure 4. 
 
The exhaled gas of the volunteers was analyzed 
by using PTR-MS. The information on the PTR-MS 
mass spectra between smokers and nonsmokers 
was obtained. The data of the signal intensity 
corresponding to m/z of each column was 
analyzed by using the logistic regression 
algorithm. It was found that the charge mass 
ratios with a high correlation to smoking were 42, 
67, 83, and 97. According to the principle of 
proton transfer reaction, it is speculated that ions 
at m/z 42, 67, 83, and 97 may be acetonitrile, 
isoprene, difluoroethanol, and fluorobenzene, 
respectively. Other VOCs in the breath and their 
relationship   to   smoking    should    be   studied  
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Figure 2. Exhalation spectrum. 

 
 

 
 
Figure 3. m/z from 20 to 150 corresponding to the parameter of smoking. 
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Figure 4. Logical regression prediction results. (a) Accuracy of the m/z 42 prediction was 88.5%. (b) Accuracy of the m/z 67 prediction was 78.5%. 
(c) Accuracy of the m/z 83 prediction was 83.5%. (d) Accuracy of the m/z 97 prediction was 83.5%. 

 
 
further. 
 
Training process of the BP and FC neural 
networks 
Classification prediction models using the 
traditional BP and FC neural networks were 
established by using the Python programming 
language under the PyTorch framework. The data 
columns of 39, 42, 45, and 67 in the dataset were 
input as eigenvalues to the input layer. Of the 
1,119 instances, 80% were used as the training 
set for the FC neural network, while the other 
20% were used to test the prediction accuracy of 
the neural network. The FC neural network 
model included both negative and positive 
controls in training and testing. A total of 199 

groups of positive samples and 696 groups of 
negative samples were used in the training, and 
44 groups of positive samples and 180 groups of 
negative samples were used in the testing. The 
neural network attempted to identify the best 
network in every training process and learning 
set, and randomly chose different initial weights 
and thresholds. Thus, the prediction results were 
different each time. After 20 predictions of the 
test data, the minimum accuracy rate of the BP 
neural network prediction model was 90.179% 
twice, 91.071% 5 times, 91.518% thrice, 91.964% 
7 times, and the optimal accuracy rate of 
92.411% thrice. The FC neural network prediction 
model had a minimum accuracy rate of 93.304% 
twice, 93.75%  thrice, 94.196%  7 times, 94.643%  
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Figure 5. Predicted results of 895 sets of the training data to 224 sets of the test data. (a) Back propagation neural network prediction model 
classification results and the expected output results, with 17 incorrect predictions. (b) Fully connected neural network prediction model 
classification results and the expected output results, with 11 incorrect predictions. 

 
 
Table 2. Logical Regression and Connected Neural Network classification results. 
 

Logistic regression algorithm 
Back propagation 
neural network 

Fully connected neural 
network 

 m/z 42 m/z 67 m/z 83 m/z 97   

Accuracy 88.5% 78.5% 83.5% 83.5% 92.411% 95.089% 

 
 
6 times, and the optimal accuracy rate of 
95.089% appeared twice. 
 
Prediction classification results of the BP and FC 
neural networks 
The exhalation mass spectrometry data of 224 
volunteers were input into the trained neural 
network for prediction. The predicted 
classification results and the expected output 
results are shown in Figure 5. The accuracies of 
the BP and FC neural network prediction models 
were 92.411% and 95.089%, respectively. 
 
By comparing the classification results and the 
prediction accuracies of the models constructed 
using the traditional BP and FC neural networks, 
the latter had higher accuracy and prediction 
precision. The FC neural network model with an 
optimal accuracy rate of 95.089% was saved as 
the final model for smoking prediction. At the 
21st training, the minimum variance was 
0.029946, minimum gradient was 0.000599, and 

correlation between the final learning data and 
the target was 0.83425, which is a high value. 
 
Receiver operating characteristic (ROC) curve 
In this study, an FC neural network model 
combined with expiratory mass spectrometry 
was used to predict the smoking behavior, and 
the best calculated sensitivity, specificity, and 
accuracy were 72.5%, 97.5%, and 95.089%, 
respectively.  
 
Comparison of Logical Regression and 
Connected Neural Network 
Compared to the logistic regression classification, 
the classification accuracy of the smoking 
behavior was improved by using the FC neural 
network combined with four columns of 
characteristic values obtained using expiratory 
mass spectrometry, which was superior to the 
conventional two-class method. The comparison 
results were shown in Table 2. 
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   (a)                (b) 

        
 
Figure 6. Predicted results after 20 predictions. (a) 671 sets of the training data to 224 sets of the test data. The worst accuracy of the prediction 
results was 90.179% thrice, 90.625% twice, 91.071% twice, 91.964% 5 times, and 92.411% thrice, and the optimal accuracy rate of 92.857% thrice. 
The prediction results after preserving the neural network training model had an accuracy of 92.857% with 16 erroneous predictions. (b) 448 sets 
of the training data to 224 sets of the test data. The worst accuracy of the prediction results was 86.607% once, 87.054% twice, 87.5% once, 
87.946% once, 88.839% 5 times, and 89.286% twice, and the optimal accuracy rate of 90.179% appeared 8 times. The prediction results after 
preserving the neural network training model having an accuracy of 90.179% with 22 erroneous predictions. 

 
 

 
 
Figure 7. Bar height corresponds to the prediction accuracy of each training dataset, and the blue ellipse corresponds to the number of occurrences 
of each accuracy. The prediction accuracy of 895 sets of the training data for 224 sets of the test data was the best in terms of both accuracy and 
optimal accuracy. 

 
 
Prediction results 
To study the influence of the sample size on the 
accuracy of the prediction results, the first 60% 
as the first 671 group and the second 40% as the 
second 448 group of the training data were 
selected and input into the neural network for 
training. The trained neural network was used to 
predict the last 224 groups of the expiratory mass 

spectrometry data, and the predicted results are 
shown in Figures 6. The smoking prediction 
model trained using different training sets was 
developed, and the prediction accuracy and the 
corresponding probability of each group of the 
training data are shown in Figure 7. The training 
processes also had different performances as 
shown in Table 3. 
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Table 3. Comparison of different numbers of the data training processes. 
 

Training sample size Mean-square error Gradient Data dependency 

895 0.029946 0.00059599 0.83425 
671 0.076588 0.00000697 0.82672 
448 0.093298 0.000001992 0.80718 

 
 

Discussion 
 

The questionnaire method can be used to 
determine whether an individual smokes, and 
the results are easy to quantify and analyze 
statistically. However, survey results are 
vulnerable to the subjective will of the 
respondents. The authenticity is not guaranteed, 
and the accuracy is low. Although the accuracy of 
the blood test and lung texture analysis in 
determining the smoking behavior is guaranteed, 
the detection cycle is long, and the patient bodies 
will also be harmed. The use of genetic methods 
to detect smoking requires multiple investigators 
to conduct multiple experiments and 
comparisons. The individual smoking behavior is 
finally discovered by determining the mutation of 
the smoking-related genes. The accuracy of this 
method is very high, but the detection is time-
consuming, expensive, and labor-intensive. 
 
In the previous study [34], the Mann–Whitney U 
test was used to test the acetonitrile content in 
smokers and nonsmokers, and the cut-off point 
of the acetonitrile concentration was determined 
by the SPSS data analysis with an receiver 
operating characteristic (ROC) curve drawn to 
determine the sensitivity of 79% and the 
specificity of 91% for predicting smoking. By 
combining the sensitivity and specificity, the 
accuracy of this reported method could be 
estimated at approximately 88.8%. In another 
study, the contents of cyanide and acetonitrile in 
exhaled gases of 370 volunteers were classified 
as markers of smokers and nonsmokers [35]. The 
ROC characteristic curves were obtained by using 
SPSS software. The best sensitivity and specificity 
for distinguishing smokers from nonsmokers 
were 73.7% and 95.5%, respectively, and the 
calculated accuracy was approximately 90.7%. In 

this study, the best calculated sensitivity, 
specificity, and accuracy for smoking behavior 
prediction were 72.5%, 97.5%, and 95.089%, 
respectively. The comparation of different 
methods showed that there were differences on 
samples collection and used datasets. Therefore, 
the accuracy was the only reference, which 
confirmed that predicting the smoking behavior 
based on the FC neural network was a feasible 
method. 
  
Logistic regression is a conventional classification 
method that is used to handle the regression 
problem with dependent variables as classified 
variables. Moreover, it is often used to handle 
two-class or binomial distribution problems and 
can also handle multiclassification problems. 
Therefore, Logical regression was used to classify 
and predict the optimal dataset in this study.  
 
The smoking prediction model trained using 
different training sets was investigated in this 
study. By comparison of the prediction results of 
different training samples, it was observed that 
the smoking prediction model became 
increasingly reliable with an increase in training 
samples. From the point of view of the training 
process, the more the training samples, the 
smaller the minimum mean variance, the larger 
the gradient, and the stronger the data 
correlation. From the training results, it was 
confirmed that the more the training samples, 
the higher and more stable the prediction 
accuracy. Therefore, increasing the number of 
the training samples can improve the accuracy 
and stability of the smoking prediction models. 
 
 

Conclusion 
 



Journal of Biotech Research [ISSN: 1944-3285] 2020; 11: 97-110 

 

109 

 

In this study, expiratory mass spectrometry data 
were combined with an FC neural network for 
predicting smoking behavior. Characteristic 
values with a high correlation with smoking were 
obtained through parameter analysis. They were 
used to classify and predict smoking. The signal 
intensities corresponding to m/z 42, 67, 83, and 
97 were used as the input of the neural network, 
and the label column data were used as the 
output value of the training model. The reliability 
of the smoking prediction model designed in this 
study was determined according to the 
performance of the training process of the 
model, prediction results, and prediction 
accuracy. The FC neural network combined with 
expiratory mass spectrometry has the 
advantages of being non-invasive, fast, and 
accurate in predicting smoking behavior. 
Comparing to social smoking surveys, our model 
is less laborious, has shorter investigation 
duration, and has greater investigation scope. 
Concerning disease prevention, smokers can be 
alerted, and then the diseases caused by smoking 
can be reduced. The prediction methods 
proposed in this study may also have potential 
applications in exhalation-related disease 
prediction and drug abuse detection, which 
should be studied further. However, the 
instrument for collecting breath data by 
proposed method is relatively bulky, so that the 
miniaturized instrument can be developed in the 
future to expand its application field. 
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