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River pollution has always been a major challenge in global environmental protection. With the acceleration of 

industrialization and rapid population growth, industrial wastewater, agricultural discharges, and domestic 
sewage continue to flow into rivers, triggering serious water pollution problems. The current river pollution 
treatment methods can alleviate the pollution problem to a certain extent, but still face inefficient treatment, 
expensive cost, and secondary pollution. Therefore, this study proposed an improved model that combined 
genetic algorithm, particle swarm optimization algorithm, and long short-term neural network. The genetic 

algorithm was applied to optimize processing parameters, improve processing efficiency, and reduce cost. The 
long and short-term memory network algorithm was used to predict and simulate changes in pollutants during 

different treatment stages, thereby optimizing the entire treatment process. The cyber physical system was used 
to ensure real-time data collection and accurate processing operations. The results showed that the absolute error 
of the improved genetic algorithm was as low as 0.05%. The difference between the highest and lowest error 
values of the model was 18.30%, and the relative error variation differed by 24.23%. By applying the proposed 
model, the river pollution treatment effect was improved with stronger treatment ability. In the pollutant change 
monitoring indicators, the conformity was 98.3% for oxygen demand, 97.5% for potassium permanganate, and 
98.2% for ammonia nitrogen. The proposed model could improve the river pollution treatment system and 
analyze the river pollution treatment data with more comprehensive and better data signals being systematically 
analyzed and processed to improve pollution treatment efficiency. After adding the improved genetic algorithm, 
the river pollution treatment had been effectively optimized and controlled, which provided better research value 

for this field. 
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Introduction 
 
With the rapid development of industrialization 
and urbanization, river pollution has become a 
serious problem in globalization. Rivers, as an 
important component of natural ecosystems, not 
only play a crucial role in providing water 

resources, but also serve as important protected 
areas for biodiversity [1]. Due to industrial 
wastewater discharge, untreated urban domestic 
sewage discharge, and agricultural non-point 
source pollution, river pollution is becoming 
increasingly serious, which not only threatens the 
ecological safety of water environment, but also 
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poses a serious threat to human life and public 
health [2]. Among many strategies for controlling 
river pollution, the optimization and control of 
the pollution treatment process is particularly 
important. Traditional river pollution treatment 
methods often focus on post treatment, lacking 
efficient prevention and real-time control 
mechanisms. In addition, due to the complexity 
of river pollution treatment processes, 
traditional methods have many limitations in 
resource allocation, treatment efficiency, and 
cost control [3]. Therefore, exploring an efficient, 
economical, and sustainable optimization 
strategy for river pollution treatment is crucial. 
Genetic algorithm (GA), as an efficient global 
optimization method, has been widely applied in 
multiple fields [4]. As one of the most important 
freshwater resources on earth, rivers play an 
irreplaceable role in maintaining ecological 
balance, ensuring human life, and promoting 
economic development. Vara et al. investigated 
the impact of human micro pollutants on 
freshwater ecosystems and the relationship 
between micro pollutants and the genetic 
structure of aquatic organisms. Genetic markers 
were used to analyze the genetic structure of 
naked cheeked toads. Their sensitivity and 
bioaccumulation to the common insecticide 
imidacloprid were analyzed. The results indicated 
that the sensitivity of arthropods to micro 
pollutants depended on the pollution degree, but 
long-term exposure might increase its sensitivity 
[5]. He et al. proposed a lake basin water quality 
management system based on the response 
relationship between river and lake water quality 
to address the mismatched water quality 
objectives. The results showed that the system 
could effectively identify key pollution sources in 
lake basins, and accurately locate key points for 
water quality improvement and pollution control 
[6]. Huang proposed a dynamic multi game 
model to explore the relationship between the 
river basin environmental governance 
effectiveness and upstream-downstream 
cooperation and found that, although pollution 
reduction cooperation could improve the 
environment, it might not necessarily increase 
social welfare. The ecological compensation 

mechanism must meet the conditions to be 
effective. Consumer preferences and other 
parameters had a significant impact on decision-
making [7]. Cheng et al. proposed a new action 
framework based on incentive mechanisms to 
improve the environmental governance 
effectiveness in river basins and improve cross 
administrative governance mechanisms. The 
results demonstrated that horizontal cost sharing 
contracts could effectively improve the local 
cooperation in environmental governance. 
Under certain conditions, downstream cost 
sharing contracts could achieve a win-win 
situation between environmental governance 
and government governance, which provided a 
new research direction for the government to 
establish a reasonable pollution management 
cooperation mechanism and promote 
sustainable development of river basins [8]. 
 
The improved GA can not only improve 
prediction accuracy and precision, but also 
achieve good research results in different fields. 
Djekidel et al. proposed a three-dimensional 
quasi-static model of the electric field generated 
by high-voltage overhead power lines. The 
charge simulation method combined intelligent 
optimization algorithms such as particle swarm 
optimization (PSO), GA, and grey wolf optimizer 
to calculate the optimal parameter values. The 
results indicated that the grey wolf optimizer was 
more effective than other algorithms [9]. Yang et 
al. proposed an improved method combining 
adaptive GA and Back Propagation Neural 
Network (BPNN) to solve insurance fraud and 
improve the performance of BPNN. This method 
overcame the drawbacks of BPNN such as easily 
falling into local minima, slow convergence 
speed, and strong sample dependence by 
optimizing the initial weights of BPNN. The 
results showed that the improved GA was more 
advanced than traditional GA in convergence 
speed and prediction accuracy [10]. Kumar et al. 
proposed a prediction model based on random 
forest and GA to better determine the dosage of 
coagulants in water treatment processes. This 
model could actively determine the dosage of 
coagulants based on the characteristic changes 
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of raw water, without the need for expensive 
chemical reagents. The method could quickly 
respond to changes in water quality and showed 
that the model performed well in simulating the 
dosage of coagulants in water treatment plants 
[11]. 
 
In the current research on GA, most of the studies 
mainly use GA to analyze the data and improve 
the performance, which is of great significance 
for improving the river pollution control system. 
However, for the river pollution treatment 
process, there are problems such as low 
efficiency and high processing costs of river data 
processing, as well as a lack of real-time dynamic 
control ability for complex pollution factors. This 
study used a teleological approach combining 
GA, PSO, and long and short-term memory 
network (LSTM) to optimize the river pollution 
treatment system. The proposed new model 
aimed to improve the control accuracy and 
efficiency of the river pollution treatment 
process, reduce the operation cost, and improve 
the system ability to adapt to complex pollution 
conditions, which would not only effectively 
optimize and adjust parameters, but also provide 
more accurate analysis and prediction of data in 
the river pollution control, thereby optimizing 
the entire control process. It would also provide 
a more efficient and economical solution for river 
pollution treatment. By integrating the advanced 
computational model, it could not only enhance 
the scientific and practicality of river pollution 
treatment technology, but also positively 
influence other related research in the field of 
environmental sciences, promoting 
environmental protection and sustainable 
economic development.  
 
 

Materials and methods 
 

Analysis of river pollution treatment process 
The pollution treatment of rivers can be divided 
into three stages. The first stage is a physical 
process that involves removing a large amount of 
solid pollutants from rivers. The second stage is 
biochemical treatment that removes organic 

pollutants and colloids from river pollution [12]. 
The third stage is advanced treatment that 
mainly involves denitrification, 
dephosphorization, and disinfection of the river 
polluted wastewater from the previous stage. 
Biochemical treatment is the most important, 
which can solve most of the pollutants in river 
pollution. The Cyber Physical System (CPS) is 
usually used to control the biochemical 
treatment process. In the CPS, because the 
system needs to carry out monitoring, 
controlling, and other operations, the network 
structure needs to be added to the whole system 
[13]. The treatment process of river polluted 
wastewater mainly involves controlling the 
treatment process such as the parameters and 
data of the reactor and other systems of the 
current process flow to optimize and improve the 
treatment process of river polluted wastewater. 
During the whole treatment process, the CPS is 
the main system to control the operation of 
various reactors [14]. The process flow of river 
data processing mainly includes anaerobic, 
anoxic, and aerobic reactors. The parameters and 
data of each reactor are controlled by the 
modules of the CPS application layer unit. 
Therefore, how to improve the efficiency and 
effectiveness of existing river pollution treatment 
processes mainly depends on the application 
layer of the CPS. Since the data and parameters 
of river sewage treatment are recorded by 
operators, there are many uncertain factors in 
the data. Therefore, to improve the data 
accuracy in the current pollution treatment 
process, a new data pre-processing process was 
designed when optimizing the model data 
acquisition process [15]. In the data collection for 
river pollution treatment, the PLC controller was 
used to return the data collected by the server. 
The data flow mainly used the perception 
module TCP to return the data. After that, the 
server received the data, and then sent the data. 
Finally, the data and parameter information of 
the river pollution treatment system were 
obtained (Figure 1) 
 
Analysis and model construction of river sewage 
treatment process based on improved GA 
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Figure 1. Data collection process. 

 
 
In river sewage treatment, there are non-linear 
and time-varying relationships between 
biochemical reactions of different pollutants, 
reactor treatment data, and variables. The 
traditional CPS cannot meet the current more 
accurate data processing process. Therefore, the 
data processing process and reactor response 
process should be re-optimized and controlled in 
river pollution [16]. Deep learning is a feature 
expression learning model, which can analyze the 
highly nonlinear data of river sewage treatment 
process and was used to optimize the model. GA 
shows excellent data processing effect in 
processing nonlinear data and multi-objective 
optimization. However, the traditional GA has 
some disadvantages such as poor local search 
ability, reduced search ability after evolution, and 
easy to converge, which makes the traditional GA 
unable to better process reactor data. To solve 
the convergence and search ability of traditional 
GA, PSO and LSTM were introduced to improve 
the traditional GA. LSTM can maintain data 
information for a long time with better data 
dependence ability, which is more flexible in data 
processing than other models. PSO is simpler and 
more efficient with strong data adaptability and 
without gradient calculation, which greatly 
improves the data processing ability. The 
improved GA algorithm first needed to obtain 
river pollution treatment data. The obtained data 
was initialized to get the particle swarm, and the 
fitness was calculated and divided. Then the 
fitness particle swarm and population variation 
were calculated to get the new particle swarm. 
The individual and global extremum were 
updated, while the position and speed of the 
particles were also updated. The maximum 

number of iteration or the minimum limit of 
global extremum were then judged. If the result 
reached one of them, the data would be 
regarded as the input of the training set. 
Otherwise, fitness would be re-calculated. The 
training set was parameterized to determine 
whether the current parameter was a complex 
number, and the loss function was calculated 
through LSTM. If the loss function is less than the 
set error, the parameter size was updated to 
determine whether the parameter was a 
complex number. Both data that were less than 
the set error or not a complex number were 
output (Figure 2). The improved GA not only had 
the global search ability, but also could solve the 
easily occurring local extremum. When 
calculating fitness, the loss function of the 
current river pollution treatment data should be 
calculated to judge and optimize the algorithm 
parameters as shown in equation (1) [17]. 
 

2

1

1
( )

M

verify prem
Loss y y

M =
= −  (1) 

 

where Loss  was the loss function of the model. 

,verify prey y  were the real value and output value 

of the model data at a certain time. M  was the 
number of data. The size of the loss function 
calculated by PSO was shown in equation (2). 
 

psoLoss Loss=  (2) 

 

where psoLoss  was the loss function size of the 

PSO. The loss function value of the GA was shown 
in equation (3) [18]. 
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Figure 2. Schematic diagram of the improved GA flow. 

 
 

1/ (1 )gaLoss Loss= −  (3) 

 

where gaLoss  was the loss function value of GA. 

The parameter calculation included the position 
vector, velocity vector, and optimal position in 
the current space. The position vector was 
expressed as equation (4). 
 

1 2 6( , , , )i i i ix x x x=
r

L  (4) 

 

where ix
r

 was the vector size of the position. 

1 2 6, , ,i i ix x xL  represented the position 

coordinates of different parameters. The velocity 
vector of the model was shown in equation (5). 
 

1 2 6( , , , )i i i iv v v v=
r

L  (5) 

 

where iv
r

 was the speed vector size of the 

current model. 1 2 6, , ,i i iv v vL  was the speed 

information of different parameters. The optimal 
position of the model was shown in equation (6) 
[19]. 
 

1 2 6( , , , )i i ii
p p p p=
ur

L  (6) 

 

where 
i

p
ur

 was the vector size of the optimal 

position. 1 2 6, , ,i i ip p pL  was the optimal 

position of different parameters. The optimal 
position of the model was shown in equation (7). 
 

1 2 6( , , , )gbest gbest gbestgbest
p p p p=
ur

L  (7) 

 

where gbest
p
ur

 was the optimal position vector size 

sought by the current model. 

1 2 6, , ,gbest gbest gbestp p pL  was the optimal 

position information of different parameters. The 
speed update obtained at this time was as 
follows. 
 

1

1 2()( ) ()( )k k k k

id id id id gbest idv wv c rand p x c rand p x+ = + − + −  (8) 

 

where 
k

idwv  was the affirmation of the current 

particle to own state. 1 ()( )k

id idc rand p x−  was 

the experience of the current particle. 

2 ()( )k

gbest idc rand p x−  was the update speed of  
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Figure 3. System modules for river pollution treatment.  

 
 

the particle. w  was the weight factor. 2 1,c c  

were acceleration factors. ()rand  was the 

randomly generated constant value in 0-1. 
1k

idv +
 

was the size after speed update. The updated 
particle position was than as equation (9). 
 

1 1k k k

id id idx x v+ += +  (9) 

 

where 
1k

idx +
 was the updated location 

information. 
k

idx  was the current position 

information. To avoid convergence of the model, 
the inertia weight of the model was calculated 
below [20]. 
 

max min
max

max

* current

w w
w w itera

itera

−
= −  (10) 

 

where maxitera  was the maximum number of 

iteration steps of the current model. currentitera  

was the iterations of the current model. 

max min,w w  represented the maximum and 

minimum values of the weight, respectively. The 
weight decreased with the increase of iterations. 
In the selection of model fitness, the loss function 

was selected through equation (2) to find the 
optimal population individual. When the number 

of chromosomes was cM , the chromosome 

crossing of the model was equation (11). 
 

*c cM M p=  (11) 

 

where M  was the chromosome. cp  was the 

gene crossover operator. The variation operation 
of the model was shown in equation (12) [21]. 
 

* *m mM M l p=  (12) 

 

where M  was to the number of populations. l  

was the coding length of the gene. mp  was the 

probability of chromosome variation. The system 
module of river pollution treatment was then 
built (Figure 3). The complete system module 
included controller, algorithm module, database 
data acquisition module, system state 
monitoring, and the most important logic control 
module. The system module mainly analyzed and 
controlled the river pollution process to optimize 
the river pollution treatment. The control core 
was the data processing and optimization 
process of the algorithm module. 



Journal of Biotech Research [ISSN: 1944-3285] 2024; 17:364-374 

 

370 

 

Data resource 
The data used in the study was from the Chinese 
National Surface Water Quality Automatic 
Monitoring Data Website 
(http://106.37.208.243:8068/GJZ/Business/Publi
sh/Main.html), which updated the water quality 
data of the operating national automatic water 
quality monitoring station in real time with an 
update frequency of every 4 hours. The data was 
collected from 03:00 on August 15, 2023 to 19:00 
on January 25, 2024 with 1,000 water quality 
data being collected. The population distribution 
on both sides of the river was dense, making it a 
conventional urban river. The water quality of 
this section of the river was complex, which was 
subject to various interventions. Two datasets 
were used for this study, which represented data 
from two sections of the river. River section 1 
referred dataset 1 that flew through the main city 
and was relatively affected by the city. River 
section 2 was dataset 2 that flew through the 
urban edge area and was less affected by the city. 
Both datasets contained 2,000 pieces of river 
data information. 
 
Computer hardware and software 
The computational system used for this study 
was a 4 Cores CPU with the RAM of 32 GB and 
200 GB disk volume. The initial learning rate of 
the algorithm was set to 0.02, while the weight 
value was set to 0.0005. Visual Studio (Microsoft, 
Redmond, WA, USA), Eclipse 
(https://www.eclipse.org/), IntelliJ IDEA 
(JetBrains, Prague, Czech Republic), and Xcode 
(Apple, Cupertino, CA, USA).  
 
Model training and validation 

To prove the feasibility and effectiveness of 
the designed method, river pollution treatment 
data in a sewage treatment plant was simulated. 
The data parameters of the reactor in the current 
sewage treatment plant were selected for 
optimization analysis, which included oxidation-
reduction potential (ORP) with a time step of 20, 
an optimizer of adam, a batch size of 100, a 
model neuron count of 160, and dropout of 0.5. 
The dissolved oxygen (DO) value was set as a time 
step of 40, an optimizer of adam, a batch size of 

150, a model neuron count of 200, and a discard 
rate of 0.5%. The setting parameters in ORP and 
DO were specific parameter values that the 
model needed to set during training. ORP 
represented the redox values in river water 
quality changes, while DO represented the 
dissolved oxygen content of water in river 
pollution. The LSTM model was used as the main 
model for data processing when verifying the 
performance effect of the model. Ablation 
experiments were conducted by comparing 
different traditional models including 
autoregressive model (AR), moving average 
(MA), and geographic information system (GIS) 
to analyze the advanced performance of the 
proposed model. Further, the GA-LSTM, PSO-
LSTM, LSTM, and the improved GA used in the 
study were tested for error comparison. The 
evaluation index included absolute error (AE) and 
relative error (RE). 
 
 

Results and discussion 
 

Comparison with different models 
The results showed that AE and RE of the 
improved GA were the lowest among the four 
tested models with the lowest AE of 0.05% and 
the lowest RE of 0.13% (Table 1). The maximum 
error value appeared in the LSTM with the 
maximum AE of 18.35%, and the maximum RE of 
24.36%. The differences of AE and RE between 
the two models were 18.30% and 24.23%, 
respectively, which indicated that the improved 
GA had better model effect in data analysis and 
processing. The pollution indicators before and 
after using the improved GA were compared and 
demonstrated that the DO decreased faster after 
applying the model, and the maximum deviation 
reached about 2 ppm (Figure 4a). The pH reached 
neutrality faster, and the maximum difference in 
pH was 0.4 (Figure 4b). The decline curve of 
potassium permanganate after adding the model 
was relatively fast with a maximum difference of 
1 mg/L (Figure 4c). The nitrogen ammonia also 
decreased faster after adding the model with the 
maximum  difference  of  0.2  mg/L  (Figure  4d). 

http://106.37.208.243:8068/GJZ/Business/Publish/Main.html
http://106.37.208.243:8068/GJZ/Business/Publish/Main.html
https://www.eclipse.org/
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Table 1. Comparison of test errors for four algorithms. 
 

Number 
GA-LSTM PSO-LSTM LSTM Improved GA 

AE (%) RE (%) AE (%) RE (%) AE (%) RE (%) AE (%) RE (%) 

1 5.32 6.67 5.26 6.67 18.24 23.56 1.21 1.25 
2 5.26 5.36 5.36 6.95 18.35 24.36 1.95 1.54 
3 5.16 6.35 5.48 3.48 16.35 20.64 0.51 0.21 
4 3.54 4.21 2.65 1.36 13.51 15.34 0.12 0.31 
5 3.65 3.95 2.31 1.24 13.62 15.36 0.12 0.31 
6 2.64 2.54 2.15 1.45 10.35 11.65 0.09 0.21 
7 2.36 2.35 2.64 1.65 10.23 11.21 0.08 0.23 
8 2.36 2.64 1.32 0.95 5.36 11.21 0.07 0.22 
9 1.24 1.12 1.24 0.95 3.25 8.25 0.05 0.13 

10 1.11 1.12 1.32 0.85 3.12 8.15 0.06 0.11 
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Figure 4. Comparison of different pollutant indicators before and after using the model. 

 
 
From the comparison of four indexes, the results 
showed that the improved system could enhance 
the treatment efficiency of current pollutants. 
The average AE reflected the comparison 
relationship between the true value and the 
monitoring value. If the error value was small, the 
data would be better. The average AE of the four 
models was then compared. The results showed 
that the average AE curve of the designed 

method was the lowest, while the error curve of 
other algorithms fluctuated up and down (Figure 
5), which indicated that the data detection effect 
of other algorithms was poor when processing 
the data. The data monitoring effect of the 
designed model was better than others with the 
average error of LSTM of 6.23%, and the average 
value of improved GA of 2.03%, which was 4.20% 
lower.   To  test  the  pollutant  prediction  effect 
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Figure 5. Comparison of average absolute error of four models. 
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Figure 6. Comparison of model data testing. 

 
 
after adding the improved algorithm, the 
pollutant treatment results obtained from the 
model simulation were compared with the real 
data. The results demonstrated that, in the 
comparison of four pollutant indexes, the real 
value and predicted value change curves of the 
improved GA were consistent (Figure 6), which 

indicated that, after adding the improved model, 
the prediction of pollutant changes was almost 
consistent. Among them, the pH value prediction 
showed significant consistency of 92.3%. The 
other three pollutants were 98.3% for oxygen 
demand, 97.5% for potassium permanganate, 
and 98.2% for ammonia nitrogen, respectively.  
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Figure 7. Numerical changes of two pollutants after model training. 

 
 
Table 2. Comparison of error and accuracy in data processing of four models. 
 

Dataset Models MSE RMSE MAE MAPE Accuracy (%) 

Dataset 1 

AR 3.24 13.56 10.25 11.32 88.35 
MA 2.25 15.96 11.64 12.32 86.07 

GIS 4.23 14.62 10.35 12.54 87.62 
Improved GA 1.23 9.56 8.64 9.62 92.35 

Dataset 2 

AR 3.54 14.20 11.32 12.57 89.24 

MA 4.65 13.24 11.65 11.68 91.20 
GIS 5.36 12.34 11.75 12.68 90.35 

Improved GA 2.15 8.36 7.57 9.56 94.35 
Notes: MSE: the mean square error. RMSE: the root mean square error. MAE: the average absolute error. MAPE: the average absolute percentage 
error. 

 
 
Model training and testing 
The dataset was divided into training and testing 
datasets on average. After setting the different 
detection parameters for pollutants, the model 
data training of pollutants showed fluctuations. 
After adding the new system model for data 
training, the change was consistent with the 
initial change, but the difference was that the 
data for both pollutants showed a downward 
trend, which indicated that data training on 
pollutants could improve the entire process and 
efficiency of pollutant treatment and reduce river 
pollution (Figure 7).  
 
Comparison to traditional treatment methods 
The comparison results between the proposed 
method and traditional treatment methods 
including AR, MA, and GIS showed that the 
designed model demonstrated lower error 

values. The improved GA in both datasets 
showed better accuracy changes with the highest 
accuracy in dataset 2 of 94.35%, which was 5.11% 
higher than the lowest model in the same dataset 
(Table 2). The results showed that the model 
used in the study had better river pollution 
treatment effect and optimization control ability. 
 
A new improved model based on GA was 
proposed to address the poor control 
effectiveness and incomplete technology in 
current river pollution treatment processes. The 
new model integrated PSO and LSTM into the GA, 
enhancing data monitoring and control of 
pollution treatment processes in the system, and 
improving the effectiveness and efficiency of 
river pollution treatment. After adding the 
model, the treatment effect of river pollution was 
better, and the treatment ability was stronger. 
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Compared with traditional algorithms, the 
research method had the highest accuracy 
among the tested algorithms. The pollution 
treatment process of the system was more 
efficient and fast after adding the model. 
However, there were still some shortcomings for 
this study, which included that the pollutants 
tested in the study did not include insoluble 
pollutants. In addition, more other models 
should be compared with the proposed model. 
Further research should train more models for 
comparative analysis. 
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