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Base editing, a revolutionary genome editing technology, has risen to prominence for its distinguished features 
such as high fidelity, precision, and targeted specificity. It has found broad applications across the spectrum of 
gene therapy, precise breeding, and in-depth gene function studies. The efficiency of base editing and the integrity 
of resultant genotypic products are the most important performances of base editing technology, which 
determine whether it can ultimately be suitable for clinical utilization. Because the underlying determinants that 

influence base editing efficiency and genotypic output remain elusive, the optimization of base editing presently 
is predominantly dependent on empirical knowledge and iterative experimental attempts. Machine-learning-
based prediction for editing efficiency and genotypic outputs can guide base editing applications and optimize 

base editors in silico, helping researchers improving experimental efficiency and saving experimental costs, which 
positions it as a significant research direction within this field. This research systematically reviewed the 
development trajectory of prediction methodologies from CRISPR/Cas9 to base editing, highlighted the intrinsic 
differences between predictions for base editing and those for CRISPR/Cas9, and then provided a detailed review 
of all outstanding base editing prediction methods for the first time. The key issues and future directions were 
also provided for upcoming researchers. 
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Introduction 
 
Genome editing has become an important 
technology with applications spanning gene 
therapy [1, 2], veterinary and agricultural 
biotechnology [3], foundational genomics 
research [4], etc., which facilitates precise 
genetic manipulations including the insertion, 
deletion, and alteration of DNA sequences both 
in vivo and in vitro [5]. Presently available 
genome editing tools such as zinc finger nuclease 
(ZFN) [6], transcription activator-like effector 

nuclease (TALEN) [7], and the transformative 
clustered regularly interspaced short palindromic 
repeats/Cas (CRISPR/Cas) system [8] elicit 
targeted double-strand breaks (DSBs) in the DNA, 
which activate intracellular non-homologous end 
joining (NHEJ) or homologous directed repair 
(HDR) pathways [9] to achieve various genetic 
modifications [10]. NHEJ-mediated cellular 
repairing processes of DSBs may introduce 
random nucleotide insertions and deletions 
(indels), leading to disruptive frameshift 
mutations [11]. In contrast, HDR-mediated 
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repairing requires a donor template, allowing for 
genome editing using artificially designed foreign 
DNA templates [12]. Generally, NHEJ and HDR 
coexist and compete with NHEJ being more 
efficient than HDR. Consequently, most editing 
outcomes typically involve both insertion and 
deletion outside the target locus [13], posing 
significant latent risks. Numerous studies have 
observed substantial off-target effects associated 
with these genome editing methods, some of 
which even carry a carcinogenic risk [14]. 
 
Base editing is a genome editing technology that 
has been evolving since 2016. Different from 
traditional genome editing technology, base 
editing does not rely on DNA double-strand 
breaks but enables single nucleotide editing in 
DNA or RNA with high efficiency and precision 
[15]. The development of base editing has 
significantly affected the basic and clinical 
research [16]. About 58% of the known genetic 
variants that cause disease in humans are point 
mutations, also referred as single nucleotide 
variants (SNVs) [17]. In addition, SNVs are the 
main genetic variants affecting livestock traits 
such as growth, development, fertility, etc. [18]. 
This is why base editing has been seen as a 
promising way to overcome the challenges of 
treating many diseases and biological breeding 
[19]. Base editing achieves gene correction 
through a complex of deaminase enzyme, Cas9 
variants, and single guide RNA (sgRNA). The 
sgRNA serves as a targeting mechanism that 
guides the Cas9 variants to unpair the desired 
DNA sequence, while the deaminase enzyme 
catalyzes the conversion of specific nucleotide 
bases [15, 20]. The base editing systems are 
classified into two categories based on the 
deaminase enzyme utilized including the cytosine 
base editor (CBE) and the adenine base editor 
(ABE), which complete the conversion of cytosine 
(C) to thymine (T) and adenine (A) to guanine (G), 
respectively (Figure 1). Base editing systems 
conjugate either a catalytically inactive Cas9 
(dCas9), which has undergone mutations that 
render it devoid of nuclease activity, or a nickase 
Cas9 (nCas9), which can only cleave single DNA 
backbone with a deaminase enzyme that 

mediates the conversion of the target nucleotide 
[21, 22]. The sgRNA is used to anchor the Cas9 
variants-deaminase complex to the genomic 
target. Upon targeting, an ‘R-loop’ is formed 
through base pairing between the sgRNA and the 
DNA, resulting in a localized single-strand DNA 
(ssDNA). Within a certain range, known as the 
‘activity window’, the deaminase enzyme 
converts C to uracil (U) or A to inosine (I). The 
modified nucleotides are then repaired or 
replicated to achieve precise base substitutions 
[23]. They differ in that CBE converts C to U, 
which pairs as T during DNA replication, resulting 
in C to T and G to A conversion [24]. ABE converts 
A to I, which is treated as G during replication, 
resulting in A to G and T to C conversion [25]. 
Following the inception of ABE and CBE, many 
researchers have witnessed significant 
advancements in the optimization of these tools. 
A multitude of base editors has been introduced, 
of which ABE has developed to the 7th generation 
[26]. Additionally, CGBE that can convert C to G 
has also been developed [27]. 
 
Although base editing is more efficient and has 
fewer by-products than traditional genome 
editing approaches, the off-target problem still 
exists. The off-target of base editing means that 
the base editor converts the non-targeted 
nucleotides. Once the off-target occurs, it may 
cause genetic disorders, disrupt normal cellular 
functions, and even induce cancers [28]. 
Therefore, precision is the prerequisite and 
guarantee for the successful therapeutic 
application of base editing [29]. Motivated by this 
need, the prediction of base editing efficiency 
and outcomes has become important research to 
guide the therapeutic application of base editing 
and the development of new base editors [30]. A 
lot of prediction methods and tools have been 
proposed for CRISPR/Cas9 systems. Notably, 
experimental biotechnology-driven tools such as 
GUIDE-Seq [31], Digenome-Seq [32], SITE-Seq 
[33], CIRCLE-Seq [34], HTGT [35], and BLISS [36], 
etc. have been instrumental in identifying off-
target events across the genome. These methods 
offer unbiased, genome-wide detection 
capabilities.   Conversely,   computational-based 
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Figure 1. Schematic representation of CBE (a) [15] and ABE (b) [20]. 

 
 
methods offer a swift, economical, and 
straightforward alternative by quantifying off-
target effects without the requirement for 
experimental design [37]. Pioneering 
computational-based off-target detection 
methods like CCTOP [38], MIT-score [39], and 
CROP-IT [40] are proposed based on empirical 
knowledge to formulate detection rules. With 
the evolution of machine learning, many 
researchers have applied machine learning 
techniques such as naive Bayesian networks, 

enhanced regression trees, support vector 
machines (SVM), and convolutional neural 
networks (CNN) to off-target effect prediction. 
The first machine-learning-based off-target 
detection algorithm is the cutting frequency 
determination (CFD) score [41], which already 
outperformed empirical rule-based off-target 
detection methods [42]. As the corpus of genome 
editing knowledge expands and validation 
datasets become more comprehensive, a 
succession of machine-learning-based off-target 
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detection methods has emerged, each surpassing 
the CFD score in Receiver Operating 
Characteristic (ROC) curve performance. 
Listgarten et al. proposed Elevation, an approach 
that included two machine learning models, of 
which one for assessing individual guide-target 
interactions, another amalgamated these scores 
into a collective guide score [43]. Alkan et al. 
proposed CRISPRoff, a model predicated on the 
approximate binding energy of the Cas9-gRNA-
DNA complex [44]. ROC analysis showed that 
CRISPRoff outperformed all the tools mentioned 
above. The ability of deep learning in predicting 
off-target effects has been underscored by 
several studies. Chuai et al. proposed 
DeepCRISPR, a hybrid neural network model that 
employed unsupervised deep learning for sgRNA 
feature representation, followed by a CNN 
classifier for off-target prediction [45]. Another 
deep learning model CNN_std leveraged multiple 
convolutional kernels to learn sequence 
characteristics of sgRNAs and target sequences, 
combined with a batch normalization layer to 
avoid over-fitting and a drop-out layer to 
enhance generalization ability, and consequently 
further improved the prediction accuracy [46]. In 
2020, the authors of CNN_std developed another 
prediction model CRISPR-Net [37], a recurrent 
convolutional network for scoring the off-target 
activities with mismatches and indels, addressing 
a notable gap in the field and enhancing 
predictive performance over CNN_std. 
 
While the aforementioned prediction 
approaches for CRISPR/Cas9 systems are 
constantly being optimized, it is important to 
recognize that the off-target factors in base 
editing systems differ. The dynamic interplay 
between the base editor and its target sequence 
affects the editing efficiency and outcomes in a 
more complex and sometimes unintuitive way 
[47]. Scenarios where the activity window 
encompasses multiple target nucleotides may 
result in a broader spectrum of potential 
genotypic outcomes. To date, the factors 
impacting the base editing off-target effects have 
not been explored deeply enough, and there is a 
lack of consensus in the field [48]. Generally 

speaking, base editing systems exhibit two 
primary forms of off-target activities including 
genome-wide off-target activities mainly caused 
by mismatches of sgRNAs [49] and off-target 
activities within the editing window due to 
incorrect editing of bystander nucleotides. The 
former is also observed in CRISPR/Cas9 systems, 
allowing for the adaptation of existing off-target 
detection methodologies, while the latter cannot 
be predicted by current CRISPR-based methods. 
Currently, the methods of improving the purity of 
base editing outcomes are usually done by 
empirically optimizing the base editors as well as 
sgRNAs [50]. Certain feasible off-target activities 
that do not match empirical guidelines are easily 
overlooked as simple empirical guidelines cannot 
fully cover all possibilities of base editing 
systems. There is an imperative need to design 
specialized approaches that are tailored to the 
intrinsic workings of base editing systems, which 
can be very helpful not only in instructing the 
applications of base editing systems but also in 
developing new base editors. With the rapid 
development of artificial intelligence (AI) in 
recent years, prediction technologies have been 
significantly developed. Several distinguished 
approaches specialized for base editing 
prediction have been proposed. However, up to 
now, there has been no literature that 
systematically reviews the evolution of 
prediction technologies for base editing. This 
research first systematically reviewed the 
development trajectory of genome editing 
outcome prediction technologies for 
CRISPR/Cas9 and highlighted the intrinsic 
differences between predictions for base editing 
and those for CRISPR/Cas9. The study provided a 
detailed review of all outstanding base editing 
prediction methods from the beginning to the 
most recent including the architecture, training 
data construction, and training methods along 
with the analysis of their performance. The 
challenges and directions for the future 
development of base editing prediction 
technologies were also identified. This study will 
be helpful in attracting more AI experts to apply 
the latest AI technologies to assist in the 
development of base editing prediction methods. 
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Methods for base editing prediction 
 
The efficiency and outcomes distribution are 
important performance indicators for base 
editing systems. The total efficiency of base 
editing systems is defined as the number of all 
short reads that yield an editing effect divided by 
the number of valid short reads after high 
throughput sequencing. Specifically, the base 
editing efficiency at position i is calculated as 
total reads that contain nucleotide transition at 
position i divided by total valid reads. The 
outcomes distribution is the probability 
distribution of each editing outcome across all 
editing outcomes. Efficiency measures the 
effectiveness of the base editing systems, and the 
outcomes distribution measures the off-target 
risk of the base editing systems. The efficiency 
and off-target rates varying greatly in different 
base editing systems and target sequences are 
major constraints for base editing applications 
[51]. The optimization of base editing systems is 
aimed at improving efficiency and reducing off-
target rates. However, they are more of a 
mutually restrictive relationship. For example, 
enhancing the concentration and expression 
time of deaminase and Cas9 complex in cells may 
improve the efficiency to a certain degree, but at 
the same time, that will also lead to an increase 
of the off-target rate. Modifying deaminase can 
narrow the activity window of the deaminase, 
thus reduce the off-target rate, but that may 
reduce the efficiency. Therefore, accurate 
prediction of editing efficiency and outcomes 
under specific conditions is essential for the 
strategic selection of sgRNAs, base editors, and 
Cas9 variants, thereby maximizing the desired 
efficiency and outcomes. Since the inception of 
base editing in 2016, along with the development 
of machine learning technology, several 
distinguished methods have been proposed by 
researchers, which leverage machine learning 
technology to predict the efficiency and 
outcomes distribution of base editing systems.  
 
(1) BE-Hive 
Komor et al. published the first base editing 
system and researched the off-target effects of 

base editing earlier [15]. In 2020, Arbab et al. 
proposed BE-Hive, the first machine-learning-
based model for the prediction of base editing 
outcomes [47]. BE-Hive incorporated two models 
including one for the prediction of editing 
efficiency and another for bystander editing. The 
editing efficiency model, a logistic regression (LR) 
model, was first designed to extract the 
correlation between editing efficiency and 
sequence motif. The prediction results indicated 
that the sequence motif was an important factor 
affecting the editing efficiency for all base editors 
with a weight of 15% to 32%. To further exploit 
higher-order interaction and more features, a 
gradient-boosted regression tree (GBRT) model 
was subsequently utilized. The architecture of 
GBRT is shown in Figure 2a. The GBRT model 
expanded upon the LR model by incorporating 
more base editing factors including the single 
nucleotide and dinucleotide motifs at each 
position, sgRNA melting temperature, the G/C 
fraction, the total count of each nucleotide, the 
activity window, and so on. The GBRT model 
demonstrated enhanced predictive accuracy 
over the traditional LR model. To predict the 
bystander editing outcomes, BE-Hive designed 
and implemented a deep conditional 
autoregressive (DCAR) model (Figure 2b). The 
model was implemented by a pair of neural 
networks including an encoder with two hidden 
layers and a decoder with five hidden layers. Each 
hidden layer comprised 64 neurons. The 
networks were fully connected with Rectified 
Linear Unit (ReLU) as activations along with 
residual connections that linked neighboring 
layers. DCAR processed each substrate 
nucleotide and its immediate sequence context 
through the shared encoder to create a deep 
representation, which was then utilized by the 
autoregressive decoder. The decoder 
systematically produced a distribution of 
potential base editing outcomes for each 
nucleotide loci, taking into account the context of 
previously determined outcomes. The model 
considered four factors including 50 base pair 
(bp) target sequence and protospacer adjacent 
motif (PAM), sgRNA, base editor, and cell type. 
The      findings      of      BE-Hive      inspired      the 
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Figure 2. The architecture of GBRT (a) and DCAR (b) [47]. 

 
 
improvements of base editors and achieved 
previously unattainable editing goals. The results 
demonstrated the method’s performance by 
accurately correcting 3,388 disease-associated 
SNVs with a success rate of 90% or higher. 
Furthermore, BE-Hive also identified previously 
unpredictable determinants of C to G or C to A 
transitions, facilitating the precise correction of 

174 pathogenic SNVs with comparable accuracy. 
In the following year, a CGBE system was 
developed and retrained the BE-Hive model using 
the CGBE datasets, expanded its capabilities [52]. 
Regarding the datasets, sequence-activity 
correlations of 11 base editors across 38,538 
integrated sequences was constructed, and these 
data   sets   was   used   to   train   BE-Hive.   These 
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Figure 3. The architecture of DeepBase [53]. 

 
 
sequences covered all base arrangement 
combinations within the editing window, and 
then were integrated into three types of cell lines 
including mouse embryonic stem cells (mESCs), 
human embryonic kidney cells (HEK293T), and 
human osteosarcoma cells (U2OS) for base 
editing. 
 
(2) DeepBase 
DeepBase is a CNN-based prediction model 
developed for the base editing system by Song et 
al. in 2020 [53]. According to the types of base 
editors ABE and CBE and the purpose of 
prediction for efficiency and proportion 

predictions, DeepBase designed and 
implemented four specialized models including 
ABE_efficiency, CBE_efficiency, ABE_proportion, 
and CBE_proportion. Each model was designed 
with a similar structure yet distinct in some 
parameters. A schematic representation of their 
architectures and important parameters was 
shown in Figure 3. The input of each model was 
uniform, one-hot encoded matrix of the target 
sequence with PAM. The convolution layer of 
each model shared the parameters of kernel size 
3, channel dimension 4, stride 1, and no padding. 
The variation across models laid in the number of 
filters    employed.    Notably,    the    exclusion   of 
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Figure 4. A schematic representation of CGBE-SMART [55]. 

 
 
pooling layers was a deliberate design choice, 
stemming from the observation that models 
performed more effectively without them. The 
count of dense layers and the associated nodes 
also varied between models. ReLU activation 
functions were utilized throughout all layers with 
the exception of the last layer of the proportion 
models, which employed a Softmax activation 
function. During the training process, the model 
adopted two strategies to prevent overfitting, 
which were early stop strategy based on the 
predictive performance of the validation datasets 
and a 0.3 dropout rate across all layers. 
Especially, when the datasets were not large 
enough, the use of the dropout strategy was a 
common method to prevent overfitting by 
avoiding the co-adaptation problem of nodes. In 
addition, seven traditional machine learning 
models were constructed for performance 
comparison. The comparative analysis 
demonstrated that, with an adequate volume of 
data, the CNN-based model consistently 

outperformed these traditional models, even 
though DeepBase contained only 2-3 hidden 
layers. This finding aligned with previous 
observations in CRISPR genome editing 
applications. Concerning the datasets, the 
efficiencies and outcomes at 13,504 and 14,157 
integrated sequences edited by ABEs and CBEs 
were first generated followed by 95 and 102 
endogenous target sites edited by ABEs and CBEs, 
respectively, in HEK293T cells to evaluate the 
prediction accuracy of DeepBase at endogenous 
sites.  
 
(3) CGBE-SMART 
The traditional CBE is capable of editing C to T, 
but editing C to G or A to T is capable of 
addressing approximately 11% of the 32,044 
pathogenic point mutations [54]. In 2021, 
researchers developed cytosine-to-guanine base 
editor (CGBE) and proposed the predictive 
methods for CGBE [52, 55]. The ability of CGBE 
was achieved by removing uracil DNA glycosylase 
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inhibitor (UGI) or increasing uracil DNA N-
glycosylase (UNG). Compared to CBEs, CGBEs 
exhibited a reduced specificity, which meant that 
the outcomes were more diverse. The purity of 
CGBE could only reach 30-50% [56]. In some 
CGBEs,  the amount of C to T by-products might 
even exceed the target C to G target products, 
possibly due to CGBE's increased reliance on the 
cellular DNA repair mechanisms to convert AP 
sites to guanines [57]. Yuan et al. developed a 
total of 8 CGBE variants and trained the CGBE-
SMART model based on the editing datasets of 
these variants [55] (Figure 4). The CGBE-SMART 
used a deep convolutional neural network 
inspired by Google inception networks that 
employed a parallel processing approach using 
filters of varying sizes to capture features across 
multiple scales [58]. CGBE-SMART comprised 
nine foundational models, each with window 
sizes of 7, 9, and 11 nucleotides, triplicated for 
every nucleotide position. Each model was 
assigned a learned weight, which contributed to 
the final output. The input was the one-hot 
encoded matrix of the target sequence from 
protospacer position 1-20. For a base model, the 
first layer comprised 256 neurons followed by the 
second layer with 128 neurons, both employing 
ReLU activation. The final layer, consisting of a 
single neuron, employed a Sigmoid activation to 
produce the output predictions. A dropout rate 
of 0.3 was integrated during training to prevent 
overfitting, and the mean square error (MSE) was 
utilized as the loss function. The efficiency 
prediction model's output provided the editing 
probability for each individual target nucleotide, 
which was more precise than the editing 
probability of the entire target sequence output 
by BE-HIVE and DeepBase. CGBE-SMART 
incorporated a Markov network to account for 
the interdependencies between nucleotide 
positions. For the sake of simplicity, the model 
primarily focused on the relationships between 
adjacent editing sites, simplifying the Markov 
network to a Bayesian network equivalent. By 
inputting the editing probability of each position 
as determined by the efficiency model, the 
Bayesian network deduced the distribution of all 
possible editing outcomes. On the datasets, 

41,388 integrated target sequences and 100 
HEK293T endogenous target sites were 
generated based on eight CGBEs. CGBE_SMART 
could also be used for training and prediction of 
other base editing systems such as ABE and CBE. 
When compared with BE-Hive and DeepCBE 
models, CGBE-SMART demonstrated superior 
predictive accuracy in 7 out of 8 CGBE datasets. 
 
(4) BE-DICT 
BE-DICT represented an innovative methodology 
to predict per-base editing efficiency and 
outcomes through an attention-based deep 
learning algorithm [59]. The inspiration from the 
transformer architecture was drawn [60]. Each 
nucleotide of BE-DICT models was as a linguistic 
entity, employing a multi-head self-attention 
mechanism to process the genetic sequence 
(Figure 5). The model took a 23 bp target 
sequence containing PAM as input and translated 
each nucleotide and its positional context into a 
dense vector format through one-hot encoding. 
This vector was then channeled into the encoder 
block, a core component comprising a self-
attention layer, normalization and residual 
connection layers, and a feed-forward network. 
The self-attention layer operated through a 
multi-head mechanism, where a series of single-
head self-attention layers worked in tandem to 
refine the input vector. The outputs from these 
layers were concatenated and processed to 
produce a vector of fixed dimensions. Residual 
connections were strategically integrated to 
enhance the gradient propagation during the 
training phase, while layer normalization was 
applied to address the "covariate-shift" 
phenomenon by re-standardizing the vector 
representations. The feed-forward network 
further refined the vector representation derived 
from the preceding layers. Post the cascade of N 
encoders, the edit probability for each base was 
determined via a linear transformation followed 
by a Softmax activation. The outcomes prediction 
module adhered to an encoder-decoder 
framework, mirroring the encoder's complexity 
in the decoder's structure. The decoder included 
a mask self-attention layer and an encoding-
decoding    attention    layer    with    the    former 
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Figure 5. The architecture of BE-DICT [59]. 

 
 
functioning as an "autoregressive layer" that 
utilized only preceding information to ascertain 
the output probability. The encoding-decoding 
attention layer was instrumental in discerning 
the significance of each base in the input 
sequence for the output base vector [61], 
enabling the model to precisely determine the 
likelihood of each potential outcome. For 
training, the model was fed with a dataset of 
23,123 random target sequences and 5,171 SNVs 
related to diseases. To mitigate bias towards 
edited sequences, an additional 25% of unedited 
target sequences were integrated into the 
dataset for each base editor. Furthermore, the 
model used 18 ABE and 16 CBE endogenous loci 
editing data from HEK293T cells for validation. 
 
(5) FORECasT-BE 
Ananth et al. constructed a suite of prediction 
models for each target nucleotide within editing 
window 3-10 [62]. These models were 
constructed based on linear regression with L1 

and L2 regularization, gradient boosting trees, 
and neural networks, respectively. For the neural 
network models, the evaluation spanned a range 

of hidden layers of 1 ~ 5 and channel counts per 

layer of 10 ~ 500. The gradient boosting tree 
models were assessed based on the number of 

decision trees of 10 ~ 1,000, tree depth of 1 ~ 10, 

minimum leaf count of 1 ~ 50, and learning rates 

of 0.001 ~ 1. The final evaluation on the datasets 
generated revealed that the three types of 
models had similar performance, and finally, the 
gradient boosted tree model was chosen because 
it had better feature extraction capability than 
that of linear regression and better 
interpretability than that of neural networks. 
Therefore, the model architecture of FORECasT-
BE was similar to Figure 2a. Notably, the method 
could only predict the editing efficiency by base 
but not the probability distribution of editing 
outcomes. On the datasets, the CBE datasets 
were generated in K562 cells, and the ABE 
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datasets were generated in HEK293T cells. The 
datasets contained target base editing data for 

each position within the editing window of 3 ~ 10 
totaling 14,409 target sequences. In addition, the 
FORECasT-BE was jointly trained by fusing the 
datasets of BE-Hive and DeepBase to improve the 
generalization ability.  
 
(6) DeepBE 
The applications of the base editing systems are 
frequently restricted by specific PAM, base 
editing types, and sgRNA. Cas9 is susceptible to 
PAMs. Different Cas9s recognize different PAMs, 
e.g. the canonical PAM required by SpCas9 is 
NGG. Because humans have an average of one 
NGG every eight bases, this restriction can be 
easily overcome. However, there are still cases 
where some of the target loci lack the required 
PAM. In these cases, variants or homologues of 
Cas9 that can recognize different PAMs such as 
SpCas9-VQR, SpCas9-VRQR, etc. are developed. 
Until now, more than a dozen different Cas9 
variants have been developed. Base editing can 
be categorized as ABE, CBE, and CGBE, however, 
each base editing type also contains numerous 
variants. The selection of sgRNA can affect the 
positioning of the target nucleotide within the 
editing window, and different Cas9 and base 
editing variants affect the efficiency of base 
editing. How to determine the most efficient 
combination of editing systems among different 
sgRNA, Cas9 variants, and base editing types is 
very difficult for base editors. To address this 
problem, Kim et al. firstly developed the deep-
learning-based model DeepCas9variants trained 
on the edited datasets of nine Cas9 variants for 
the purpose of predicting which Cas9 variants 
induced the most efficient editing to the target 
nucleotide [63]. Taking the prediction scores of 
DeepCas9variants as input, another deep-
learning-based model DeepBE was developed for 
63 base editors which were combinations of nine 
Cas9 variants and seven base editing variants. 
The architecture of DeepCas9variants and 
DeepBE was shown in Figure 6. The input of 
DeepCas9variants was the 30 bp target sequence 
and specific Cas9 variant. After one-hot 

encoding, the base editing efficiency guided by 
this Cas9 variant was obtained after a series of 
layers. The architecture within the dense layers 
was tailored for each Cas9 variant with variations 
in both the number of layers and their associated 
hyperparameters. For the SpCas9, SpRy, and Sc++ 
variants, a three-layer dense structure was 
implemented, comprising 1,500 nodes for 
SpCas9 and 1,000 for SpRy and Sc++ in the first 
two layers and 100 nodes in the third layer. In 
contrast, other Cas9 variants utilized a two-layer 
setup with 1,500 and 100 nodes, respectively. 
The convolution kernels were all 4 × 10 in size 
with either 1,000 or 2,000 channels. The DeepBE 
model was also divided into DeepBE_efficiency 
and DeepBE_proportion. Different from the 
existing efficiency prediction model, 
DeepBE_efficiency used the editing window ±1 
bp as input information. In addition, it leveraged 
the DeepCas9variant scores as an indicator of 
Cas9's activity level. The input to 
DeepBE_proportion was a 20 bp target sequence 
deliberately excluding the PAM to eliminate the 
influence of PAM compatibility on the prediction. 
Within the convolutional layer, a variable 
number of nodes of 256, 512, or 1,024 were 
engaged based on the specific base editing 
system, and the extracted features were 
flattened. The final prediction scores for the base 
editing systems incorporating Cas9 variants were 
derived from the multiplication of the output 
layers from both the efficiency and proportion 
models [63]. Although DeepBE was developed to 
predict efficiency and outcomes for 63 base 
editors, it’s difficult to generate datasets of so 
many base editors for training. The dataset 
utilized for DeepBE's training encompassed 
seven base editors containing the SpCas9-NG 
variant and an additional seven base editors 
containing a diverse array of Cas9 nickase 
variants. It was noteworthy that the authors also 
deployed five traditional machine-learning-based 
models for comparison with the results 
demonstrating that the deep-learning-based 
models outperformed other conventional 
models, corroborating the superior predictive 
capabilities of deep-learning-based models 
observed in the DeepBase models.  
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Figure 6. The architecture of DeepCas9variants and DeepBE [63]. 

 
 
(7) BE_Endo 
The above studies developed computational 
models mainly based on integrated datasets, 
offering advantages in optimizing sgRNA for 
genome editing and holding potential for future 
applications. However, a critical distinction exists 
between the synthetic measurements of editing 
efficiency and outcomes in integrated datasets 
and those observed in endogenous genome 
editing. Although the aforementioned studies 
also developed some endogenous datasets, 
these datasets were mainly used for testing, not 
for training. Because the scale of these datasets 
was small with only a few hundred at most. Yuan 
et al. constructed a comprehensive endogenous 
dataset encompassing over 5,000 target sites  
[64]. Comparative analysis demonstrated 
significant variations in editing efficiency and 
outcomes between endogenous and integrated 
targets. Factors influencing endogenous editing 
efficiency included, but were not limited to, 
transcriptional activity, Pol II and CTCF binding 
sites, chromatin accessibility, and histone 
modification patterns. By incorporating analyzed 
endogenous factors and sequence features, the 
authors proposed a deep learning model similar 

to Google Inception named BE_Endo with the 
architecture depicted in Figure 7. The efficiency 
model of BE_Endo was structured with five 
convolutional layers featuring varying kernel 
sizes, followed by a concatenation layer, a max 
pooling layer, and a 20-size vector output layer. 
The input matrix was a one-hot encoded 
representation of the 40 bp target sequence, 
spanning 10 bp upstream, the 20 bp protospacer, 
the 3 bp PAM sequence, and 7 bp downstream, 
complemented by additional channels for one or 
more endogenous factors. The factors 
incorporated were selected by influence 
according to the analysis of endogenous 
datasets. The ABE_Endo model only incorporated 
the H3K27ac modification factor, and the 
CBE_Endo incorporated all factors listed in Figure 
7. The proportion model succeeded the efficiency 
model, employing a Bayesian network to 
ascertain the combined probabilities of all 
potential editing outcomes for each target site. 
The results showed that, compared with models 
only incorporating sequence features, the 
models incorporating endogenous factors 
improved the prediction accuracy at endogenous 
target sites. 
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Figure 7. The architecture of BE_Endo [64]. 

 
 
(8) Comparison of proposed methods 
A comparative analysis of the key aspects of the 
aforementioned methods was shown in Table 1. 
In terms of core technologies, BE-HIVE and 
FORECasT-BE adopted conventional machine 
learning models, while others adopted deep 
learning models, in which DeepBase and DeepBE 
applied simple CNN, CGBE-SMART, and BE-Endo 
applied Inception architecture, BE-DICT applied 
Transformer architecture. Every method 
implemented efficiency prediction and outcomes 
prediction, except for FORECasT-BE which only 
incorporated the efficiency prediction. The types 
of researched base editors were getting richer 
from ABE and CBE to CBGE. The number of 
researched base editors was increasing from 
several to dozens. The datasets for training 
models were more comprehensive from 
considering only base editing types to 
considering Cas9 variants and endogenous 
factors. Collectively, the prediction models were 
constantly evolving with a gradual increase in 
prediction ability and generalization. The most 

universal metric for evaluating the performance 
of base editing efficiency and outcomes 
prediction is the Pearson correlation coefficient, 
followed by the Spearman correlation coefficient 
[65]. Additionally, some research has also 
incorporated the KL divergence as a metric for 
gauging the success of predictive models. The 
Pearson correlation coefficient was calculated as 
equation (1). 
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where ix  was the i-th predicted outcome. x

signified the average of all predicted results. 

Correspondingly, iy  and y  were the measured 

and the mean values of the sample set, 
respectively. The total count of samples was 
denoted by n. The Pearson correlation 
coefficient, r, varied from -1 to 1, where a 
positive r indicated a positive  association,  and  a 
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Table 1. The comparative analysis of proposed methods.  
 

Method Model-based Sub-models Ability 
BE 

Types and 
counts 

*Inte 
data 
sets 

*Endo 
data 
sets 

BE-Hive 
[47] 

Machine 
learning 

LR 
Efficiency prediction 
under different 
Motifs ABE: 2 

CBE: 6 

38,538 
 
 

 
  

3,388 
GBRT Efficiency prediction 

DCAR 
Outcomes 
prediction 

DeepBase 
[53] 

CNN 

ABE_efficiency 
ABE efficiency 
prediction 

ABE: 1 
CBE: 1 

15,656 197 
CBE_efficiency 

CBE efficiency 
prediction 

ABE_proportion 
ABE outcomes 
prediction 

CBE_proportion 
CBE outcomes 
prediction 

CGBE-SMART 
[55]  

Inception 

CGBE_SMART-
Efficiency 

Efficiency prediction 
per-base 

CGBE: 8  41,388 100 
CGBE_SMART-
Proportion 

Outcomes 
prediction 

BE-DICT 
[59] 

Transformer 
per-base model 

Efficiency prediction 
per-base ABE: 2 

CBE: 2 
28,294 34 

bystander model 
Outcomes 
prediction 

FORECasT-BE 

[62] 

Machine 

learning 

Gradient Boosting 

Trees 
Efficiency prediction 

ABE: 2 

CBE: 2 
14,409 / 

DeepBE 
[63] 

CNN 

DeepCas9variants 
Efficiency prediction 
of Cas9 variants 

Cas9 
variants：

9 25,628 

/ 

DeepNG-BE_efficiency 
Efficiency prediction 
of BE Guided by 
SpCas9-NG 

SpCas9-
NG-BE：7 

17,280 / 

DeepNG- 
BE_proportion 

Outcomes 
prediction of BE 
Guided by SpCas9-
NG 

DeepBE_efficiency 
Efficiency prediction 
of 63 BEs Cas9-BE：

7 
11,015 515 

DeepBE_proportion 
Outcomes 
prediction of 63 BEs 

BE_Endo 
[64] 

Inception 

BE_Endo_efficiency 
 

Efficiency prediction 
ABE: 1 
CBE: 1 

11,868 5,012 
BE_Endo_proportion 

Outcomes 
prediction 

* ’Inte’ meant Integrated, and ‘Endo’ meant Endogenous. ‘/’ indicated that no endogenous datasets were generated. 

 
 
negative r suggested an inverse relationship. An r 
value approaching 1 signified a robust positive 

correlation, which was indicative of the model's 
enhanced predictive capabilities. Spearman 



Journal of Biotech Research [ISSN: 1944-3285] 2024; 18:183-201 

 

197 

 

correlation coefficient was a non-parametric 
statistical correlation and was calculated as 
equation (2). 
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where
i i id x y= −  indicated the difference in 

ranks between the measured and the predicted 
values. The Spearman correlation coefficient 
operated on the principle of determining the 
Pearson correlation coefficient for the ranks of 
the two vectors, thereby assessing the extent to 
which a monotonic relationship could 
characterize the two vectors. When a monotonic 
correlation existed between the variables, the 
Spearman coefficient reached its extremities of 
+1 or -1. Similar to the Pearson correlation 
coefficient, an increase in the Spearman value 
towards 1 denoted a more pronounced 
monotonic relationship, which correlated with 
superior predictive efficacy of the model. The KL 
Divergence served as a measure of the 
resemblance between two probability 
distributions [66], making it a valuable tool for 
assessing the accuracy of outcome predictions. 
BE-Hive integrated the KL divergence into its 
bystander editing framework as a loss function, 
while DeepBase had employed the symmetric KL 
divergence to quantify the efficacy of its 
predictive modeling. The calculation of the 
symmetric KL Divergence was shown in equation 
(3). 
 

1
( log log )
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where iP  and iQ  represented the predicted and 

observed proportion for the i-th sample, 
respectively.  A lower KL value suggested superior 
predictive capabilities. In evaluating the 
predictive efficacy of proposed methodologies, 
the performance of LR-based models was inferior 
to the machine-learning-based models. Both BE-
HIVE and BE-Endo implemented the LR-based 
models for the purpose of predicting the 

preference of sequence context adjacent to 
target sites. The comparison of BE-HIVE showed 
that LR achieved a Pearson r ranging from 0.50 to 

0.57, whereas DCAR improved this to 0.69 ~ 0.80 

for ABEs and 0.53 ~ 0.74 for CBEs. BE_Endo also 

improved the accuracy from 0.41 ~ 0.57 for ABEs 

and 0.17 ~ 0.64 for CBEs using LR-based models, 

to 0.64 ~ 0.78 for ABEs and 0.57 ~ 0.82 for CBEs 
with BE_Endo efficiency model. This was due to 
machine-learning-based models considering 
higher-order interactions and additional 
sequence features compared to logistic 
regression models. Broadly speaking, deep-
learning-based models tended to surpass 
conventional machine-learning or shallow-
learning models in performance when ample 
training data was available [53]. Otherwise, they 
had similar performance [62]. Amongst the deep-
learning-based models, Inception-based models 
were able to extract multiple sequence features 
through various kernels with different sizes, 
Transformer-based models exceled by assigning 
attention scores to each position within the 
protospacer, reflecting the position's impact on 
editing outcomes, thus outperforming 
straightforward CNN-based models. Besides, 
training datasets are also an important factor for 
the performance of models. For deep-learning-
based models, considering more factors and 
providing adequate datasets will result in better 
predictive performance. For example, the model 
trained by enough endogenous datasets 
performed better at endogenous target sites 
prediction than other models only trained by 
integrated datasets [64]. 
 
 

Challenges and future directions 
 
Although various models for predicting the base 
editing efficiency and outcomes have been 
proposed, compared to the achievements of 
CRISPR/Cas9 systems, prediction research on 
base editing systems is still in its early stage and 
there is still a lot of research space. At present, all 
the proposed machine-learning-based models 
almost directly use the existing models in the 
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Python package, and deep-learning-based 
models also draw on general models in the image 
or natural language processing field. There is no 
specific model for base editing systems yet. One 
of the reasons is that the multitude of influencing 
factors and their relationships that affect the 
base editing systems are currently unclear, which 
can be reflected in the diversity of proposed 
models. The machine learning models used in the 
proposed methods include logistic regression, 
gradient boosting trees, and autoregressive 
models. The deep learning models used in the 
proposed methods include CNN architecture, 
Inception architecture, and Transformer 
architecture. In terms of input information, 
almost no model is identical. BE-DICT, CGBE-
SMART, and Deep-BE only require the target 
sequence, but the length of the input sequence is 
different. BE-DICT and CGBE-SMART require the 
input length to be 20 bp and 40 bp, respectively. 
Deep_BE_Efficiency only requires inputting the 
sequence of editing window length. In addition to 
the 20 bp target sequence, FORECasT-BE also 
requires inputting the information of sgRNA 
melting temperature. The input of the BE-HIVE 
also includes the G/C content, the total number 
of each nucleotide, and the dinucleotide motif. 
Different models require different inputs, which 
also indicates that the affecting factors of base 
editing efficiency and outcomes are not yet clear. 
In the future, with the development of base 
editing technology, the factors will gradually 
become clearer, and it is possible and necessary 
to design specific machine learning models for 
base editing systems. The datasets are also 
pivotal in the optimization of prediction models. 
Currently, almost all proposed methods are 
trained and validated on their own generated 
datasets, but some methods differed greatly in 
their performance on other datasets. For 
example, DeepCBE had Pearson r = 0.76 on its 
own HEK293T datasets. However, on the mESC 
datasets constructed by Arbab et al., the Pearson 
r decreased to 0.38 [47]. The final model selected 
by FORECast-BE was simple, but it still achieved 
an excellent performance, mainly because it 
integrated the BE-Hive and DeepBase datasets 
during training. At present, the base editing 

datasets are limited in size and dispersed, 
necessitating the creation of comprehensive 
benchmark datasets. The benchmark datasets 
should encompass genome-wide base editing 
across various base editors, cell types, sequence 
motifs, and target nucleotide counts within 
diverse editing windows. Besides, having 
standardized datasets could attract more AI 
experts into the field and further promote the 
development of base editing technology. 
 
 

Conclusion 
 

Since the emergence of base editing in 2016, it 
has evolved from ABE and CBE to CGBE, and has 
now developed dozens of variants with rich 
applications. Although base editors have been 
greatly optimized in various aspects during 
upgrading, there remains substantial scope for 
refining their editing efficiency and reducing off-
target effects, which is currently the main factor 
restricting their therapeutic application. The 
prediction research of base editing can be used 
to guide the selection of base editors, sgRNAs, 
and Cas9 variants, recognize the preferred motif 
of specified base editors, and predict the 
affecting factors and their weights of base editing 
systems. The findings can contribute to the 
optimization and improvement of base editors. 
However, due to the fact that base editing has 
not been invented for a long time, the prior 
knowledge of base editing is not rich enough, and 
the size of the datasets is small, which makes the 
prediction of the editing efficiency and off-target 
rate is still in its infancy with a few methods 
having been proposed. Both in terms of the AI 
models and the standardization of datasets, 
there is still a lot of work that needs to be done. 
Designing specific models based on the 
characteristics of base editing systems and 
standardizing comprehensive datasets are 
important research directions to improve 
predictive performance in the future. 
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