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Soil microbial communities play a pivotal role in ecosystem functioning but can be altered by land use changes. 
This study investigated the impacts of typical land use changes on soil properties, enzyme activities, and microbial 
communities in the Henan Segment of the Yellow River basin, China following the conversion from traditional 
farmland to artificial forests and agroforestry systems. The results indicated that the transition to artificial forests 
led to an increase in soil organic matter content and soil fertility. Compared with traditional farmland, artificial 
forests demonstrated higher levels of urease and invertase enzyme activity. The soil microbiomes of traditional 

farmland and artificial forests had higher proportions of Proteobacteria and Actinobacteria, whereas the 
agroforestry systems were enriched in Acidobacteria. Co-occurrence network analysis revealed that the transition 
from conventional farmland to artificial forest enhanced soil microbial complexity and cohesion. Proteobacteria, 
Acidobacteria, Actinobacteria, Rokubacteria, Planctomycetes, and Gemmatimonadetes were identified as pivotal 
components of the soil bacterial network during land use change. Redundancy and correlation analyses showed 
a negative association between certain soil microbial phyla such as Firmicutes, Acidobacteria, and Patescibacteria, 
and pH, available potassium, and available nitrogen (P < 0.05). Moreover, nitrogen availability and urease activity 

were negatively correlated among Gemmatimonadetes, whereas soil organic matter was positively correlated 
with Chloroflexi (P < 0.05). This study revealed the critical influence of land use change on the distribution of 
crucial bacterial groups, underscoring the importance of microecological equilibrium. 

 
 
Keywords: land use change; artificial forests; soil bacterial community; co-occurrence network; Yellow River basin. 

 
*Corresponding author: Ziyu Han, Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, 
Beijing 100012, China. Email: hanziyusimon@126.com.  

 

 

 

Introduction 
 
The Yellow River basin in China has undergone 
significant development. However, it is 
confronted with formidable ecological 
challenges. In recent years, with increasing 
emphasis on high-quality development in the 
region, research on the ecological environment 

of the Yellow River basin has emerged as a focal 
point of academic attention. In the Yellow River 
basin, land use changes are among the most 
pressing ecological and environmental concerns. 
Land use change significantly affects terrestrial 
ecosystems and is emerging as a global concern 
[1, 2]. The expansion of artificial forests has been 
a notable global trend. Forestry practices 
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characterized by short rotation cycles, and multi-
generational succession can induce changes in 
soil properties [3]. Implementing scientific and 
reasonable strategies for land use practices can 
help mitigate negative soil impacts [4-6], 
conversely, unreasonable approaches might 
result in soil degradation, loss of biodiversity, and 
decreased land productivity [7]. For example, 
planting second-generation trees initially 
improves soil water retention, organic matter, 
and readily available nutrients. However, these 
benefits might diminish over time [8]. The 
transformation of natural forests into plantations 
of Cupressus sempervirens and Alnus subcordata 
increases soil organic carbon levels by 25% and 
1.11%, respectively, while the replacement of 
forests with Quercus castaneifolia, Acer 
velutinum, or agricultural land has been 
associated with declines in soil organic carbon by 
4%, 12.11%, and 53%, respectively [9]. Previous 
studies have indicated that soil degradation 
following such land conversions is often linked to 
slower litter decomposition and disrupted 
nutrient balances [10, 11]. 
 
Soil microbial communities are important 
indicators of soil health and respond quickly to 
environmental changes [12, 13]. Microbial 
communities present in soil are integral to the 
biogeochemical cycles of carbon, nitrogen, and 
phosphorus, as well as facilitate the 
decomposition of organic matter [14, 15]. There 
is evidence that plant interactions, soil 
properties, and land use influence soil bacterial 
biodiversity and composition [16-18]. The 
transition from pine forests to grasslands 
substantially alters microbial community 
composition, as indicated by phospholipid fatty 
acid profiles and physiological alterations [19]. 
Cultivating legumes notably increases soil 
microbial populations compared to cultivation of 
grasses or shrubs [20]. Traditional soil 
microorganism studies focusing on isolated 
strains through lab cultures fail to capture the full 
complexity of microbial interactions in natural 
settings. High-throughput sequencing now 
allows for an in-depth analysis of entire microbial 
communities in situ, significantly improving the 

understanding of soil microorganisms. Previous 
studies have emphasized the influence of soil 
properties on microbial community composition 
[21-23]. Hence, additional research is imperative 
to explore how alterations in land use affect soil 
microorganisms in the Henan segment of the 
Yellow River basin. 
 
Soil microbes engage in complex interactions and 
form networks that are vital for ecosystem 
functions [24-26]. These networks reveal the 
dynamics within soil bacterial communities and 
increase in complexity with plant growth, leading 
to more modular structures closely tied to 
nitrogen cycling [27, 28]. Land use changes affect 
soil microbiome structures. However, the 
relationship between these changes in soil 
properties and bacterial community networks in 
the Henan Segment of China's Yellow River basin 
is not well understood. The present study aimed 
to investigate the effects of land use changes on 
soil physicochemical characteristics, soil 
microbial diversity, and community composition 
in the Yellow River basin of the Henan section, 
China. Specifically, this research focused on three 
common types of land use including traditional 
farmland, artificial forests, and agroforestry 
systems. This study sought to analyze the impact 
of these land-use modifications on soil 
physicochemical characteristics and assess the 
influence of these changes on soil microbial 
diversity and community composition using high-
throughput sequencing. Additionally, the study 
aimed to investigate soil microbial co-occurrence 
networks and relationships and their connections 
to soil properties to gain insights into the factors 
that influenced microbial community 
composition. The findings of this research could 
inform the development of more efficient soil 
management techniques. 
 
 

Materials and methods 
 
Study area 
This study was conducted within the Yellow River 
basin in Henan, China located to the south of 
Kaifeng City (114°9′36.36″E, 34°21′18.72″N) with 
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Figure 1. The study areas and monitoring site. 

 
 
the temperature of 14.5°C, characterized by 
humidity and subtropical climate, a frost-free 
period approximately 221 days each year, an 
annual rainfall of approximately 627.5 mm. The 
suitable cultivation period stretches from the 
beginning of March to November. According to 
the Chinese Soil Taxonomy framework 
(https://www.resdc.cn/data.aspx?DATAID=145), 
the soil in this region is categorized as tidal, 
originating from alluvial deposits in the Yellow 
River. Historically, this region has predominantly 
engaged in traditional agriculture with the 
primary crops being wheat, corn, soybeans, and 
peanuts. Approximately 25 years ago, a shift 
occurred in some of this agricultural land, leading 
to the establishment of artificial forests, primarily 
consisting of Populus L., spanning an area of 6.47 
hectares. By 2018, certain portions of these 
artificial forests covering 3.31 hectares following 
clear-cutting practices underwent reforestation 

and were combined with agricultural crops to 
form agroforestry systems. Hence, the different 
land uses within the study area are traditional 
farmland (TF) characterized by the cultivation of 
crops such as wheat, corn, soybeans, and 
peanuts, artificial forests (AF), mainly mono-
species poplar stands dominated by Populus L., 
and Agroforestry systems (AFS), a mix of poplar 
and crops with the dominant plants being 
Populus L. and soybeans. The descriptions of each 
study area were shown in Figure 1. 
 
Experimental design and treatment 
In November 2020, the study randomly selected 
stands from three distinct types of land uses with 
a 10 m × 10 m plot for each stand. Five soil 
samples from each transect were mixed, and 
each land use type was transported to the 
laboratory. A portion of each soil sample was air-
dried, crushed, and passed through screens of 
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mesh sizes of 0.85, 0.25, and 0.15 mm. A separate 
portion of the sample was preserved at -20℃ for 
high-throughput sequencing analysis, which 
covered three land uses × three replicates. The 
samples were preserved in polyethylene bags for 
subsequent analysis. 
 
Soil analysis 
Soil pH was determined using a pHS-3E pH meter 
(Shanghai Leici Company, Shanghai, China) with a 
soil to water ratio of 1:2.5, shaking in a 
reciprocating shaker for 15 min at room 
temperature [29]. The electrical conductivity (EC) 
of the soil was measured using a DDS-11A digital 
meter (Shanghai Leici Company, Shanghai, China) 
with a soil to water ratio of 1:5, shaking for 30 
min, and then left undisturbed for 30 min before 
the measurements [30]. The cation exchange 
capacity (CEC) was determined using 1 mol/L 
ammonium acetate solution (pH 7.0) to treat the 
soil sample after the samples being centrifuged 
and washed with ethanol [31]. Soil organic 
matter (SOM) was quantified using the 
potassium dichromate-sulfuric acid digestion 
method to oxidize soil organic matter under 
heating conditions and was calculated by 
measuring the remaining potassium dichromate 
[32]. Soil available nitrogen was assessed using 
the alkali hydrolysis and diffusion technique by 
treating soil samples with sodium hydroxide 
solution to convert readily hydrolysable nitrogen 
into an ammonia state, which continuously 
escaped and was absorbed by boric acid followed 
by titration with a standard acid to calculate the 
amount of available nitrogen in the soil. Soil 
available potassium was determined using the 
ammonium acetate extraction method, which 
was used as an extraction agent to extract 
potassium from soil by exchanging it with 
potassium ions [33]. Urease activity in the soil 
was measured by incubating 10 g of soil with a 
10% urea solution for 24 h at 37°C and was 
reported as NH4-N in mg/g/d, whereas invertase 
activity was measured by mixing 5 g of soil with 
15 mL of an 8% sucrose solution and incubating 
at 37°C for 24 h, resulting in glucose at mg/g/d 
[34]. 
 

Next-generation sequencing 
Three replicates of soil samples from each land 
use type were analyzed using a modified 
cetyltrimethylammonium bromide (CTAB) 
method to extract DNA [35]. Briefly, CTAB was 
used to form ion pairs with DNA, which was 
subsequently combined with impurities such as 
proteins and polysaccharides that were dissolved 
in water. The impurities were eliminated by 
centrifugation and the DNA was then 
precipitated. The polymerase chain reactions 
(PCR) were performed using the primers 338F 
(GTG CCA GCM GCC GCG GTA A) and 806R (GTG 
CCA GCM GCC GCG GTA A) and the PCR products 
were analyzed and purified using an AxyPrep 
DNA Gel Recovery Kit (Sigma-Aldrich, Inc., St. 
Louis, MO, USA) and characterized by 2% agarose 
gel electrophoresis. Using a FLx800 microplate 
reader (BioTek, Winooski, Vermont, USA) and the 
Quantity PicoGreen dsDNA Assay Kit (Thermo 
Fisher Scientific, Waltham, MA, USA), 
fluorescence quantification and library 
construction were carried out with the aid of the 
TruSeq Nano DNA LT Library Pre Kit (Illumina, San 
Diego, CA, USA) following the manufacturers’ 
instructions. Illumina MiSeq Sequencing System 
was used for double-ended sequencing of 
microbial constitutive DNA. Genome sequencing 
was performed on the Pacific Biosciences and 
Illumina Novaseq platforms by Personal 
Biotechnology Co., Ltd., Shanghai, China, 
focusing on the V3-V4 region of the 16S rRNA 
gene for bacterial analysis.  
 
Statistical analysis 
Microsoft Excel 2019 (Microsoft, Redmond, 
Washington, USA) and SPSS (version 22.0) (IBM, 
Armonk, New York, USA) were used for data 
processing and statistical analysis. One-way 
ANOVA with Duncan's test was used to assess the 
impact of land use change on soil 
physicochemical characteristics and microbial 
diversity with land use change as an independent 
variable. The P value less than 0.05 was defined 
as significant difference, while P value less than 
0.01 was defined as very significant difference. 
QIIME2   (2019.4)   (https://qiime2.org/)   and   R 
 

https://qiime2.org/


Journal of Biotech Research [ISSN: 1944-3285] 2024; 18:311-325 

 

315 

 

Table 1. Effects of land use changes on soil properties. 
 

Soil properties TF AF AFS 
pH   8.04 + 0.07a     8.08 + 0.04a     7.94 + 0.02b 
SOM (g/kg) 16.83 + 1.09b   18.60 + 0.65a   17.08 + 0.28ab 
EC (cmol/kg) 76.60 + 2.41ab   81.60 + 6.58ab   86.80 + 5.17a 
CEC (g/kg)   6.75 + 6.75b     8.26 + 1.11a     6.79 + 0.15b 
Available K (mg/kg) 68.49 + 8.22b   99.10 + 8.63a   69.07 + 6.52b 
Available N (g/kg) 78.22 + 6.03c 121.22 + 13.75a 115.12 + 13.36ab 

Note: TF, AF, and AFS represented the traditional farmland, artificial forests, and agroforestry systems, respectively. The data presented are the 
average values with standard deviations from five repeated measurements. The letters represented a statistically significant disparity (P < 0.05). 

 
 

 
 

Figure 2. The impact of changes in land use on the activity of soil enzymes. The data presented were the average values with standard 
deviations from five replicates. Bars with different letters indicated a significant difference (P < 0.05). 

 
 
software (version 3.6.1) (https://www.r-
project.org/) were utilized to generate a Venn 
diagram, microbial abundance chart, co-
occurrence networks, nonmetric 
multidimensional scaling analysis, principal 
coordinate analysis, and heatmap. 
 
 

Results and discussion 
 

Soil properties and enzyme activities 
Land use changes significantly affected soil 
properties. Th results showed that AFS had lower 
soil pH than AF and TF. Soil EC, a marker of 
salinity and alkalinity, followed the order of TF < 
AF < AFS with AFS showing the highest EC value. 
Compared to TF, soil available N, available K, 
SOM, and CEC were significantly increased (P < 
0.05) in AF soils (Table 1). Land use changes had 

the potential to affect the coverage of soil 
surfaces, thereby influencing soil properties [9]. 
The disparity in SOM content in different land 
types might stem from reduced organic matter 
input resulting from agricultural practices, as well 
as the potential acceleration of decomposition 
when soil particles containing organic matter 
were exposed to air [36]. Increased SOM could 
attract positively charged ions, which frequently 
resulted in a higher CEC, consistent with the 
findings of previous studies [37, 38]. In addition, 
the results aligned with the concept that soil 
fertility robustly correlated with land use type 
[39]. Among the land use types, TF exhibited the 
lowest available nitrogen content, which could 
be attributed to consistent light in farmland that 
boosted plant transpiration and accelerated soil 
water evaporation, thus inhibiting nitrogen 
accumulation in the soil [40, 41]. Meanwhile, the  
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Figure 3. Effects of land use changes on soil microbes’ alpha diversity index. TF, AF and AFS were the traditional farmland, artificial forests, and 
agroforestry systems, respectively. Data was means ± SD of three replicates. Bars with different letters indicated a significant difference (P < 0.05). 

 
 
increased soil surface temperature due to 
intense light could accelerate nitrogen 
mineralization [42]. Furthermore, agricultural 
practices conducted in farmlands had the 
potential to reduce the size and shape of soil 
clusters, consequently affecting the 
concentrations of soil nutrients [43]. Soil 
enzymes play a vital role in determining soil 
productivity and biochemical processes. In the 
present study, soil urease activity exhibited a 
range of 0.32 to 0.90 NH4-N mg/g with AF soil 
having the highest and TF the lowest (Figure 2a). 
Soil invertase activity was also high in the AF soils 
of 1.67 mg/kg compared to TF of 1.63 mg/kg. The 
results showed that land use changes had a 
marked impact on soil enzyme activities. TF soils 
exhibited the lowest enzyme activity, indicating a 
less favorable environment for these biochemical 

processes. AF soils had higher activities possibly 
due to the presence of decomposable organic 
matter enhancing soil fertility, thus improving 
soil fertility and stimulating enzyme activity [44, 
45]. AFS soil showed higher enzyme activity than 
TF, but lower than AF with significant variability, 
which was consistent with a previous study [46].  
 
Diversity of microorganisms in the soil 
The alterations in land use affected the alpha 
diversity of soil bacteria (Figure 3). Shannon 
index ranged from 10.81 to 10.96, the Chao_1 
index changed from 4,215.52 to 4,296.47, the 
Faith_pd index changed from 238.33 to 265.19, 
and the Pielou_e index ranged from 0.9035 to 
0.9128. Microbial beta diversity was evaluated 
using non-metric multidimensional scaling 
analysis (NMDS). The stress value of the NMDS 
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analysis was calculated as 0.028, indicating a high 
level of reliability. In the NMDS analysis plots, 
land use changes could be clearly differentiated 
with TF clustering towards the left side of the 
abscissa and exhibiting distinct separation from 
AF and AFS. The AF and AFS groups clustered 
more closely than the TF group (Figure 4). These 
results indicated that soil microbial 
characteristics were greatly affected by land use 
type. The NMDS analysis yielded a stress value of 
0.028, suggesting a high degree of reliability. The 
NMDS analysis plots showed clear differentiation 
of land use changes with TF clustering on the left 
side of the x-axis and showing distinct separation 
from AF and AFS, which clustered more closely 
together than the TF group suggesting that the 
soil microbiome was significantly affected by the 
different types of land use. 
 
 

 
 
Figure 4. Effects of land use changes on soil microbes’ beta diversity. 
TF, AF, and AFS were the traditional farmland, artificial forests, and 
agroforestry systems, respectively. 

 
 
Soil microbial community 
Soil microbes are integral components of 
ecosystems and serve as pivotal indicators of the 
soil environmental quality [47-49]. The structure 
of the soil microbial population in the study area 
was illustrated in Figure 5a. The TF soil had the 
highest number of unique microbes of 7,403 
(31.03%), while AF and AFS had 6,405 (26.84%) 

and 6,510 (27.28%) unique species, respectively. 
The shared core of all the samples comprised 
1,060 microbes (4.44%). The overlap microbes 
between AF and AFS soils (1,186 species, 4.97%) 
was higher than that between TF and AF (495 
species, 2.07%) or TF and AFS (801 species, 
3.36%). Microbial sequences were categorized 
into 32 phyla, 106 classes, 258 orders, 385 
families, and 718 genera using a 97% similarity 
threshold. In addition, Proteobacteria, 
Actinobacteria, Acidobacteria, Chloroflexi, 
Gemmatimonadetes, Bacteroidetes, 
Rokubacteria, Patescibacteria, Latescibacteria, 
Planctomycetes, Firmicutes, Verrucomicrobia, 
and Nitrospirae contributed 26.21, 25.81, 23.13, 
9.81, 4.57, 2.22, 2.08, 1.42, 1.01, 0.75, 0.71, 0.56, 
and 0.41%, respectively (Figure 5b). All dominant 
bacterial phyla were markedly affected by land 
use changes. Land use change had a significant 
impact on the predominant bacterial phyla. 
Proteobacteria displayed the highest relative 
abundance in the TF soil followed by 
Actinobacteria and Acidobacteria, which were 
beneficial for soil health and decomposition. 
Actinobacteria and Acidobacteria were the most 
abundant in AF and AFS soils followed by 
Proteobacteria. The significant contribution of 
these microorganisms to soil ecosystems 
underscored their remarkable ability under 
various environmental conditions [50, 51]. 
Principal coordinate analysis (PCoA) at the 
phylum level revealed a distinct separation of soil 
microbial communities across the two axes, 
accounting for 48.9% of the total variance in the 
soil microbe composition (Figure 5c). TF, AF, and 
AFS showed significant separation with each land 
use change predominantly located in different 
quadrants. The results showed that land use 
changes had a notable influence on soil 
microorganisms. Adonis analysis (R² = 0.476, P = 
0.003) further confirmed this significant impact 
(Table 2). In addition, TF soil microbial 
communities formed a distinct group, whereas 
those of AF and AFS tended to cluster together 
(Figure 5d). These results were consistent with 
the composition and distribution of bacterial 
communities. It was evident from these patterns 
that   land   use   changes   had    an    impact    on  
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Figure 5. Impacts of land use changes on the soil microbiome. TF, AF, and AFS represented the conventional farmland, artificial forests, and 
agroforestry systems, respectively. 

 
 
Table 2. Adonis analysis based on sample distance matrix. 
 

 Df Sums of Sqs Mean Sqs F. Model R2 Pr (> F) 
Treat 2 0.911365 0.455682 2.721236 0.475638 0.003 

Residuals 6 1.004725 0.167454 NaN 0.524362 NaN 
Total 8 1.916090 NaN NaN 1.000000 NaN 

Note: Df was the degree of freedom. Sums of Sqs and Mean Sqs were the sum of squares of deviation and the mean square error, respectively. F. 
Model represented the test value of F statistics. R2 was the proportion of variances and residuals accounted for by group interpretations to the 
total variance. Pr (> F) was the P value obtained by the permutation test.  

 
 
microorganism composition, particularly those 
microbes crucial for soil material transformation.  
 

Co-occurrence network of microbial 
communities 
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Figure 6. Molecular ecological network and Zi-Pi diagram of TF, AF, and AFS. TF, AF, and AFS were the traditional farmland, artificial forests, and 
agroforestry systems, respectively. 

 
 
 
Co-occurrence network analysis (Figure 6) and 
topological data (Table 3) revealed distinct 
structural and interaction patterns among soil 
bacterial communities with land use changes. Soil 
bacterial networks transitioning from cultivated 
land to forestry systems were more positively 
than negatively connected. Compared with TF, 
the number of vertices, edges, betweenness 
centralization, modularity, average nearest 
neighbor degree, and closeness centrality 
significantly increased in AF and AFS, displaying 

more complex networks. Despite the lower 
degree of bacterial community interaction and 
connection tightness in TF, limited interactions 
still formed a highly modular bacterial interaction 
network. In the current study, Proteobacteria, 
Actinobacteria, Rokubacteria, Acidobacteria, 
Planctomycetes, and Gemmatimonadetes played 
central roles in both the co-occurrence networks 
and the overall bacterial community. 
Proteobacteria and Actinobacteria functioned as 
the  central  hub  and primary network module in  
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Table 3. Topological properties of molecular ecological network of soil bacterial communities. 
 

Properties TF AF AFS 
Vertice 684 754 778 
Edge 27298 36600 38964 
Betweenness centralization 1932979 2571859 3249515 
Modularity 0.480 0.612 0.613 
Average nearest neighbor degree 101 123 126 
Average path length 2.377 2.308 2.293 

Closeness centrality 74.628 82.019 85.315 
Degree assortativity 0.605 0.531 0.551 
Density 0.117 0.129 0.129 
Diameter 3.230 3.317 3.173 
Clustering coefficient 0.685 0.672 0.673 

 
 
the soil bacterial network with Zi ≥ 2.50 and Pi ≥ 
0.62. Acidobacteria acted as the module center 
for network modules 3, 4, and 5. Rokubacteria 
was the module center of network module 3, 
while Planctomycoetes and Gemmatimonadetes 
were the module centers of network module 5. 
Previous studies have documented the influence 
of land use changes on the quality of soil [52, 53]. 
The conversion of cultivated land to forest land 
significantly enhanced soil nutrient status and 
increased the availability of soil resources, 
thereby promoting greater complexity and 
cohesiveness within soil microbial co-occurrence 
networks [54, 55]. This was evidenced by the 
observed progressive increase in the number of 
positive correlation connections within these 
networks. Compared to TF, AFS with high levels 
of available nitrogen exhibited a higher 
abundance of nodes and connections within 
molecular ecological networks, as well as shorter 
average path lengths. These results indicated 
that differences in microbial relationships could 
be important signs that affected soil fertility, 
highlighting the profound impact of land use 
change on the biological and chemical 
characteristics of the soil. Furthermore, this 
study revealed that each module within the 
microbial interaction network possessed distinct 
functionalities. Specifically, artificial forests, 
characterized by a higher soil available N content, 
displayed a significantly greater number of 
nitrogen cycling-related network modules than 
traditional farmlands. Actinobacteria and 

Proteobacteria, which served as core members of 
the artificial forest module, were pivotal in 
nitrogen biogeochemical cycling. Similarly, key 
taxa such as Proteobacteria, Acidobacteria, and 
Actinobacteria in the TF and AFS soil networks 
primarily contributed to the soil carbon and 
nitrogen cycles. Transformation of farmland into 
forest led to a notable increase in soil organic 
carbon and total nitrogen levels. Furthermore, 
Rokubacteria, Planctomycetes, and 
Gemmatimonadetes, which were identified as 
the key organisms in the bacterial networks in 
this study, had not been extensively studied in 
soil ecology. Further research is required to 
understand their unique functions and impact. 
The results indicated that changes in soil use 
were closely linked to the characteristics of 
microbial interaction networks and their 
modules. The conversion of farmland to artificial 
forests enhanced the complexity and cohesion of 
microbial communities. 
 
Redundancy analysis 
Redundancy analysis (RDA) showed that the first 
four principal axes accounted for 79.3% of the 
total variation in the soil microbial community, 
indicating that changes in land use were the 
primary drivers of the evolution of the soil 
microbial community. The cumulative explained 
variance of 49.74% was primarily due to the first 
and second axes, which accounted for 28.01% 
and 21.73% of the variation, respectively. Soil 
microbial communities responded significantly to 
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Figure 7. RDA analysis of soil microorganisms with soil properties. TF, AF, and AFS were the traditional farmland, artificial forests, and agroforestry 
systems, respectively. The blue arrows represented environmental variables. The red arrows depicted soil microbes. The length of the arrows 
signified the relative importance of each environmental factor in explaining variations in bacterial community structures, while the angles between 
the arrows reflected the degree of correlation between them. 

 
 
factors such as soil available K and N 
concentrations, urease activity, SOM, and pH as 
evidenced by the lengths of their respective 
vectors (Figure 7). The correlation between the 
prevalence of genera and soil physicochemical 
properties was examined using Pearson’s 
correlation analysis (Supplementary Table 1s). 
The findings indicated significant negative 
correlations between certain soil microbial phyla 
including Firmicutes, Acidobacteria, 
Patescibacteria and soil pH, available potassium, 
available nitrogen (P < 0.05). Additionally, phyla 
such as Gemmatimonadetes exhibited significant 
negative correlations with available nitrogen and 
urease activity, whereas Gemmatimonadetes 
and Chloroflexi were positively correlated with 
soil organic matter and available potassium 
content (P < 0.05), respectively. These findings 
indicated that soil characteristics were crucial for 
influencing the prevalence of important bacterial 
genera, highlighting the importance of 

maintaining stability in microecosystems. Land 
use changes could have a significant impact on 
soil microbial communities, leading to changes in 
the structure and function of microbial 
populations, which in turn could affect the 
transformation and cycling of soil nutrients [56, 
57]. 
 
 

Conclusion 
 
This study evaluated how changing conventional 
farmland to artificial forests and agroforestry 
systems affected soil characteristics and 
microbial populations in the Henan Segment of 
the Yellow River basin, China. The conversion of 
traditional farmland to artificial forests 
significantly enhanced soil organic matter 
contents and soil fertility. The conversion of 
traditional farmlands resulted in the formation of 
distinct microbial communities in the soil. 
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Proteobacteria and Actinobacteria were more 
abundant in traditional farmlands and artificial 
forests, whereas Acidobacteria was more 
abundant in agroforestry systems. The shift from 
agricultural land to artificial forests or 
agroforestry areas had enhanced the complexity 
and cohesiveness of microbial co-occurrence 
networks in the soil. Actinobacteria, 
Proteobacteria, Rokubacteria, Planctomycetes, 
and Gemmatimonadetes were identified as the 
key organisms in the bacterial networks in the 
present study. Analyses of redundancy and 
correlation showed a significant negative 
correlation between Firmicutes, Acidobacteria, 
Patescibacteria and soil pH, available potassium, 
available nitrogen, respectively. 
Gemmatimonadetes and Chloroflexi were 
positively correlated with soil organic matter and 
available potassium content, respectively. The 
results confirmed that soil fertility, soil organic 
matter, and pH were critical factors that drove 
microbial community differences across land use 
types, which highlighted the advantage of 
converting farmlands to forests to improve 
biomass and soil quality. Subsequent studies may 
explore the functional roles of soil microbial 
communities to enhance the comprehension of 
their contributions to ecosystem processes 
within the context of changing land use patterns. 
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Supplementary 
 
Table 1S. Correlations between abundant taxa and soil variables. 
 

 pH SOM CEC EC Available N Available K Urease Invertase 

Acidobacteriia -0.277 0.276 -0.521 -0.442 -0.503 -0.667* -0.191 0.157 
Chloroflexi 0.245 0.057 0.246 -0.045 0.354 0.781* 0.454 0.204 
Gemmatimonadetes -0.246 0.697* -0.452 -0.535 -0.685* -0.537 -0.784* -0.317 
Firmicutes -0.733* -0.15 -0.232 0.074 0.294 -0.357 -0.329 0.103 
Patescibacteria 0.284 0.474 -0.237 -0.605 -0.759* -0.385 -0.108 -0.478 
AKAU4049 -0.377 0.126 -0.279 0.383 0.006 -0.373 -0.694* -0.167 
Anaerolineae -0.621 0.058 -0.596 -0.133 -0.233 -0.792* -0.29 0.082 
AT_s3_28 -0.249 -0.443 0.004 0.833** 0.59 0.043 0.086 -0.284 
Babeliae 0.669* -0.12 -0.483 0.265 0.11 -0.688* -0.453 0.082 
Bacilli -0.459 0.536 -0.565 -0.291 -0.532 -0.704* -0.867** -0.166 
Bacteroidia -0.415 0.798** -0.531 -0.192 -0.447 -0.21 -0.706* -0.055 
BD2_11_terrestrial_group -0.362 -0.454 -0.1 0.758* 0.556 -0.166 -0.103 -0.15 
Blastocatellia 0.111 -0.703* 0.277 0.528 0.328 -0.021 0.429 0.085 
Chthonomonadetes 0.535 -0.488 0.583 0.107 0.192 0.453 0.759* -0.173 
Clostridia -0.223 0.375 -0.619 -0.17 -0.672* -0.773* -0.334 -0.118 
Deinococci -0.415 0.543 -0.486 -0.407 -0.649 -0.715* -0.59 -0.022 
Deltaproteobacteria -0.588 -0.113 -0.555 0.324 0.032 -0.737* -0.449 0.041 
FCPU426 -0.547 -0.182 -0.545 0.339 0.073 -0.699* -0.301 0.081 
FFCH16263 0.571 -0.59 0.867** -0.147 0.51 0.796* 0.922** 0.142 
Fibrobacteria -0.672* 0.22 -0.209 -0.072 -0.173 -0.448 -0.467 0.053 
Fimbriimonadia -0.589 0.046 -0.615 0.2 -0.27 -0.914** -0.523 0.142 
GAL15 0.298 -0.625 0.525 0.286 0.693* 0.708* 0.891** 0.072 
Gitt_GS_136 0.804** -0.308 0.693* -0.49 -0.149 0.363 0.706* 0.051 
Ignavibacteria -0.124 0.830** -0.471 -0.504 -0.894** -0.512 -0.706* -0.206 
MB_A2_108 0.545 -0.457 0.289 0.024 0.218 0.246 0.724* 0.126 
NC10 0.291 -0.659 0.416 0.568 0.759* 0.534 0.625 -0.21 
OLB14 -0.772* 0.064 -0.528 0.001 -0.306 -0.922** -0.549 0.225 
Phycisphaerae -0.29 0.513 -0.572 -0.489 -0.774* -0.847** -0.566 0.021 
Rubrobacteria 0.41 -0.826** 0.808** 0.099 0.472 0.485 0.875** 0.234 
S0134_terrestrial -0.142 0.386 -0.161 0.039 -0.431 -0.334 -0.694* -0.303 
Subgroup_17 -0.086 -0.622 0.26 0.601 0.763* 0.228 0.264 -0.139 
Subgroup_6 0.095 -0.712* 0.258 0.764* 0.725* 0.218 0.357 0.04 
Thermoplasmata -0.818** 0.067 -0.257 -0.009 0.038 -0.478 -0.476 0.088 
WPS_2 -0.275 -0.162 -0.398 0.181 -0.032 -0.668* -0.241 0.112 

 


