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An environmental data monitoring model was designed in response to the demand for environmental protection 

in various regions and to improve urban air quality by using a cost-effective ZigBee wireless sensor. Feedforward 
neural networks were introduced in designing prediction models for data change trends prediction to provide a 
basis for air protection strategies. The global search and convergence performance of the model were optimized 
through strategies such as batch sample training, and air quality indicators were introduced in this study. The 
proposed model was then validated through experiments of data detection and data prediction. The results 
showed that the throughput of the proposed model increased by 4.41% compared to the other models including 
findable, accessible, interoperable, and reusable (FAIR) model, the block chain model, the Bayesian decision 
classification model, and the long short-term memory network model. The prediction accuracy of the proposed 
model improved by 0.98% compared to that of other models, and its mean absolute error (MAE) decreased by 
1.35%. The designed environmental data monitoring model had the best overall performance comparing to the 
other models with faster collection of environmental data and accurate data predictions, which provided 
reference significance for the formulation of environmental air maintenance strategies. 
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Introduction 
 
When the modernization continues to 
accelerate, many fields such as industry and 
manufacturing have been rapidly developed. 
However, modernization also leads to 
increasingly serious environmental pollution. 
Environmental media such as air, water, and soil 
have all been subjected to unprecedented 
pollution pressure, which has seriously damaged 
the ecological balance and affected the health of 

residents [1]. The spread of fine particulate 
matter (PM2.5), which is the most typical 
pollutant, not only increases the incidence of 
heart disease, asthma, and other diseases, but 
also damages the living environment of wildlife. 
Therefore, the key to the construction of green 
cities refers to the real-time and accurate 
monitoring, improving, and optimizing 
environmental quality [2]. Environmental data 
(ED) detection model can collect, analyze, and 
predict ED through sensors. In recent years, the 
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research on ED detection model has made 
remarkable progress with the rapid development 
of information technology, especially the wide 
application of the Internet of Things (IoT) and big 
data. Celicourt et al. proposed an automated ED 
collection technique based on findable, 
accessible, interoperable, and reusable (FAIR) 
principles. The sensor data transmission 
component was developed through Python, and 
the data was directly transmitted to the web 
service. The observed data model was used to 
store data and metadata, which reduced the 
manpower burden and improved the data 
processing efficiency [3]. Cheng et al. proposed a 
block chain-based incentive mechanism to 
reduce the cost of large-scale data collection. The 
system model included sensor layer, evaluation 
layer, incentive consensus layer, and ledger layer 
to ensure data quality. The results showed that 
the model effectively improved the quality of 
data collection [4]. Xie et al. developed a shallow 
sea ED acquisition system based on Narrowband-
Internet of Things (NB-IoT). The system collected 
ocean data through sensors mounted on mobile 
buoys and uploaded data to a remote-control 
center using NB-IoT modules for timely analysis 
and visualization of the data. The results showed 
that this system operated stably with low power 
consumption and effectively monitored large 
area shallow sea ED, providing scientific data for 
marine protection and development [5]. Liu et al. 
proposed an intelligent data detection 
technology based on revolving door algorithm to 
solve the redundancy problem in large-scale data 
acquisition of iot sensors. The power safety 
terminal was automatically controlled to reduce 
redundant data and energy consumption 
through the frequency adaptive acquisition 
algorithm. The results showed that its application 
to power safety monitoring greatly improved 
data acquisition efficiency and system protection 
capability [6]. 
 
However, despite technological advancements, 
there are still several challenges in the study of 
ED detection models. The first is data quality. Due 
to the uneven distribution of environmental 
monitoring stations and the errors in the data 

acquisition, the model data transmission may be 
affected by noise and weaken the reliability of 
data. In addition, the complexity of the 
environment makes it difficult for the model to 
accurately predict the changing trend of 
environmental quality [7, 8], which requires the 
prediction of ED to provide data support for 
subsequent optimizations. Shahidehpour et al. 
proposed a machine learning classifier outage 
prediction model based on Bayesian decision 
theory for power system outage risk prediction 
under extreme weather. A corresponding 
strategy was introduced to improve the learning 
and training effect of the classifier considering 
the unbalance and sparsity of the data. The 
results showed that the classifier reduced outage 
prediction errors, thus helping operators take 
effective measures to improve system resilience 
[9]. Huang et al. proposed a displacement 
prediction model for concrete arch dam based on 
long short-term memory (LSTM) and two-stage 
attention mechanism network. The optimization 
strategies such as encoder-decoder architecture 
and attention mechanism were applied to 
improve the predictive performance of the 
model. The results showed that the method 
demonstrated higher accuracy and stability in the 
concrete dam monitoring [10]. Zheng et al. 
designed a deep learning model that combined a 
virtual dynamic graph convolutional neural 
network with a transformer model using a gated 
attention mechanism to accurately predict traffic 
flow on large-scale road networks. Further, 
virtual dynamic road maps were introduced to 
improve the complex spatial dependence of the 
model with a 96.77% prediction accuracy [11]. Li 
et al. proposed a predictive model based on 
implicit characteristics of users. The implicit 
relationships were discovered by K-tree 
algorithm. The user characteristics and network 
structure were represented by graph 
convolutional networks. The results showed that 
the model had the best generalization [12]. 
 
The ED detection model is of great significance 
for the optimization of environmental pollution 
and the protection of the ecological 
environment. Although the current technology 
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has achieved some success, there is still a need to 
continuously optimize the model structure and 
improve the accuracy, stability, and versatility of 
the model. Therefore, a new ED detection model 
based on ZigBee wireless sensor network (WSN) 
was proposed in this study. The back propagation 
neural network (BPNN) was introduced for 
optimization. Batch learning and other strategies 
were introduced to optimize the global search 
accuracy and convergence performance of the 
model. This research would provide reference for 
the formulation of environmental air protection 
strategy. 
 
 

Materials and methods 
 
Design of environmental monitoring system 
based on ZigBee network and data prediction 
model 
ZigBee has been widely used in the industrial field 
due to its powerful adaptive repair and other 
functions. It is interconnected, indicating that the 
transmission delay of the model can be reduced, 
and its effectiveness can be increased through a 
multi-level hop form in completing 
communication. This study employed the low-
cost ZigBee technology commonly used in IoT to 
build an ED monitoring model. The study chose a 
mesh network topology structure for model 
building, which included subroutine initialization 
and node connection to the network. The core of 
the ZigBee network was the organization of 
coordinator nodes. Once the corresponding node 
was detected as a fully functional node, the node 
could be searched for connections to other 
networks. If not connected to other networks, 
the node could serve as the only coordinator in 
the model. Otherwise, the node could only exist 
as a child node. The connection between child 
nodes and the network required permission from 
the coordinator. The coordinator determined 
whether to accept the corresponding node based 
on its storage space and energy [13, 14]. The 
study then designed the coordinator and 
terminal modules in the ZigBee network (Figure 
1). 
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Figure 1. Structure of each module in ZigBee network.  

 
 
The coordinator module needed to build and 
detect networks, transmit maintenance data, 
and obtain data quality. The CC2530 chip (Texas 
Instruments, Dallas, Texas, USA), a true System-
on-Chip (SoC) solution for 2.4 GHz IEEE 802.15.4, 
ZigBee, and RF4CE applications, was used with an 
antenna to achieve unlimited communication 
over short distances. Terminal data information 
could be received and further displayed and 
processed through the upper computer program 
after initialization was completed. The data 
collection commands transmitted by the 
monitoring center also needed to be transmitted 
to the terminal through a coordinator. The 
terminal module was responsible for collecting 
and uploading ED information. The sensor 
module included temperature and humidity, CO, 
NO2, and PM10. Moreover, the normal operation 
relied on binding with the coordinator to 
ultimately achieve periodic environmental 
information reception. The initialization of the 
terminal module also included hardware and 
protocol stack. After successfully searching and 
connecting to available networks, the normal 
operation would enter sleep mode. After 
receiving the data collection command, the 
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operation was resumed and looped through. The 
nodes of the entire ZigBee network were 
connected through wireless networks and used 
the ZStack communication protocol, a common 
implementation of the ZigBee protocol stack, 
with ethernet as the communication channel in 
the display machine. The above basic model 
realized real-time transmission and display of 
urban ED. In addition, it was necessary to predict 
the environmental conditions through real-time 
data. A relatively mature BPNN was introduced in 
this study to optimize the model. The basic 
principle was to use activation functions to 
transfer data through the hidden layer to the 
output layer. The industry-leading RF transceiver 
technology (Texas Instruments, Dallas, Texas, 
USA) was combined with extremely high 
reception sensitivity and anti-interference 
performance. The error between the expected 
output and the actual output was calculated to 
update the corresponding weight values layer by 
layer (Figure 2). 
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Figure 2. Operation flow of BPNN. 

 
 
The initialization of weights included node 
connection weight v , threshold  , error function 
e , and learning frequency threshold M  with a 
value interval of (-1, 1). The outputs of each layer 
were calculated, and their activation function 

( )f x  was an S-shaped function. The output data 

were then normalized to the range of [0, 1] and 
expressed using formula (1). 
 

1
( )

1 x
f x

e−
=

+  (1) 
 

where 
xe−

 was the input signal. According to the 
forward propagation principle of the model, the 

output kz  of the hidden layer and the output jy  
of the output layer nodes were represented by 
formula (2). 
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where / /i k j  were to the input layer, hidden 

layer, and output layer, respectively. ( ) ( )1 2/f fg g  
were the transfer function of the hidden layer 

and the everywhere layer, respectively. kiu  was 

the weight of the input and hidden layers. jkv  was 

the weight of the implicit and output layers. The 
weight values were then adjusted layer by layer 

using the error function pE , represented by 

formula (3). 
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where /p p

j jy y  were the ideal value and the actual 
value, respectively. The global error E  was 
calculated using formula (4) after updating the 
weights layer by layer. 
 

( ) ( )( )
2

1 1

1

2

qm

o o
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E y k c k
m = =

= −
 (4) 

 
where m  was the number of input samples. 

( ) ( )/o oy k c k  were the updated connection weight 
for the hidden layer and output layer, 
respectively. Then, new samples were randomly 
selected, and the above learning operations were 
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Figure 3. Schematic diagram of adding additional momentum method.  

 
 
repeated. 
 
BPNN optimization and data preprocessing 
module analysis 
In ED monitoring, data processing was extremely 
important. Given the characteristics of ZigBee 
networks, traditional BPNN still has certain 
shortcomings. The local search strategy of BPNN 
is prone to falling into local optima when facing 
more complex nonlinear scenarios. The sawtooth 
phenomenon generated by the objective 
function optimization method with gradient 
descent can reduce the learning efficiency of the 
model and weaken its convergence performance. 
In addition, there are various issues with 
generalization ability and practical application 
feasibility. Further optimization was conducted in 
this study to improve the performance of the 
model and enhance its predictive performance. 
The study introduced batch processing 
technology that could avoid the impact of input 
samples on accuracy during online training and 

iteratively updated the network weight ijw  

based on the total training error of batch 
samples, represented by formula (5). 

( ) ( )
1

m

ij p ij o h

k

w w k ho k
=

 = = V

 (5) 
 

where ( )o k  was the partial derivative values of 

each neuron in the output layer. ( )ho k  were the 
updated connection weights of each neuron in 
the output layer and hidden layer. Subsequently, 
the study introduced a method of adding 
additional momentum, which added the change 
value of the previous weight in the update of 
weights and thresholds to complete feedforward 
adjustment through the specific calculation as 
follows. 
 

( ) ( ) ( )( ) ( ) ( )( )1 1 1c cw k m f w k m w k w k + = −  + − +  (6) 
 
where   was the learning rate. The additional 
momentum method was used to avoid situations 
where the weight value was 0, further enhancing 
the global optimization ability of the model. The 
additional momentum method was based on 
BPNN to add a term proportional to the changes 
of the previous weights and thresholds to the 
changes of the connection weights and 
thresholds of each network. Then, new network 



Journal of Biotech Research [ISSN: 1944-3285] 2024; 18:76-87 

 

81 

 

connection weights and thresholds were 
generated based on BPNN. This method made 
the network jump out of the local minimum of 
the error surface (Figure 3). Further, an adaptive 
parameter tuning technology was introduced to 
adjust the learning rate of the model. This 
method aimed to achieve adaptive adjustment of 
the model learning rate and minimize errors by 
analyzing the changes in errors, represented by 
formula (7) [15]. 
 

( ) ( ) ( )( )1w k w k f w k+ = − 
 (7) 

 
In traditional BPNN, the sigmoid activation 
function is usually chosen. However, when facing 
larger input functions, the curve will be very 
smooth. The sharp decrease in slope and the 
reduction in gradient fluctuation ultimately lead 
to the problem of stagnant weight updates. 
Therefore, the study ignored the magnitude of 
partial derivatives through elastic methods and 
focused on the changes in their symbols. The 
weight change of the optimized elastic network 
model would decrease with the oscillation 
phenomenon. Meanwhile, if the direction of 
weight updates remained consistent, the amount 
of weight change would also increase. This 
weight update strategy could greatly improve the 
convergence efficiency of the model as expressed 
by formula (8). 
 

( ) ( ) ( ) ( )( ) ( )( )( )1 1 sinw k w k w k w k f w k+ = − − − 
 (8) 
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Figure 4. Comparison of change curves of different activation 
functions. 

The study selected the Tanh activation function 
to replace the original activation function. The 
original activation function had good sensitivity 
only in the [-1, 1] interval. However, the 
sensitivity greatly decreased when the original 
activation function approached or exceeded the 
boundary infinitely (Figure 4). The Tanh function 
could better maintain the non-linear rise and fall 
effects and had good fault tolerance as expressed 
by formula (9). 
 

2

2
( ) tanh( ) 1

1 x
f x x

e−
= = −

+  (9) 
 
The study also replaced the gradient descent 
method with the quasi-Newton method to 
further enhance the convergence effect of the 
model, which mainly introduced the second 
derivative of the criterion function beyond the 
gradient of the search point criterion function 
and improved the recognition of search direction, 
which could contribute more effective 
information to the global optimal search and 
make the search method infinitely close to the 
global optimal. The specific calculation was 
represented by formula (10). 
 

( ) ( ) ( )( )11w k w k D f w k− + = − 
 (10) 

 
However, the gradient descent algorithm has a 
faster descent speed compared to the quasi-
Newton method when the weights are small. 
Therefore, the study further combined them 
using the Levenberg-Marquardt (LM) algorithm, 
which not only ensured the convergence 
performance of the model in the early stage of 
search, but also enabled it to find the correct 
search direction when approaching the optimal 
point. The entire BPNN training model aimed to 
search for the global optimal value, while 
minimizing model errors. The traditional models 
used mean square error to represent errors. This 
study introduced the arithmetic means of 
network weights to enhance the generalization 
performance of the network as shown in formula 
(11) below [16, 17]. 
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where /i it y  were the ideal output data and actual 
output data of the network model, respectively. 
F  was the final objective function that had 

undergone Bayesian regularization. /   was the 

objective function parameter. DE  was the mean 

squared error function. WE  was the sum of 

squared network weights. iw  was the connection 
weight of the network. N  was the quantity of 
samples.  
 
Analysis of air pollution using ED monitoring 
model 
After completing the overall construction of the 
ED monitoring model, the study analyzed the air 
pollution index (API). According to the air quality 
index (AQI), environmental pollution can be 
divided into 6 levels. When the AQI is in the range 
of [0, 50], the air quality belongs to first level 
(excellence), and people can move freely 
outdoors normally. When the AQI is in the range 
of [51, 100], the air quality belongs to second 
level (good) and may have an impact on some 
sensitive populations. When the AQI is in the 
range of [101, 150], it belongs to third level (mild 
air pollution), and the frequency of outdoor 
activities should be minimized as much as 
possible. When the AQI is in the range of [151, 
200], it belongs to fourth level (moderate air 
pollution). At this time, prolonged outdoor 
exercise may have adverse effects on patients 
with respiratory diseases and other conditions. 
When the AQI is in the range of [201, 300], it 
belongs to level five (severe air pollution), and 
the population generally produces adverse 
physical reactions. A larger AQI value indicates 
that the air quality has been severely polluted. 
AQI is the total sum of common air pollutants in 
a concentration, which constitutes the 

quantification of air quality as a whole. The AQI 
data used in this study was obtained from the 
real-time monitoring data of air quality 
monitoring stations in China 
(https://zx.bjmemc.com.cn/?timestamp=171809
8118224), which ensured the accuracy and 
reliability of the data. The integrated calculation 
was represented by formula (12) [18]. 
 

( )hi lo
p p lo lo

hi lo

IAQI IAQI
IAQI C BP IAQI

BP BP

−
= − +

−  (12) 
 

where p  was the type of pollutant. pIAQI  was the 

AQI sub-index of p . pC  was the mass 

concentration of p . /hi loBP BP  were the highest 
and lowest limits of pollution concentration that 

were close to pC , respectively. /hi loIAQI IAQI  was 

the AQI corresponding to /hi loBP BP . The 

calculation of the total AQI was as follows. 
 

 1 2max , ,... nAQI IAQI IAQI IAQI=
 (13) 

 
where n  was the quantity of pollutants.  
 
The datasets used in this study included Jena 
Climate Dataset and the real-time air quality data 
collected by using Zigbee network technology 
and relying on the street light system of an 
economic development zone in Beijing, China. 
The Jena Climate Dataset is a time-series dataset 
of weather recorded at the Max Planck Institute 
for BioGeochemistry weather station in Jena, 
Germany. The dataset consisted of 14 different 
quantities such as air temperature, atmospheric 
pressure, humidity, wind direction, etc. that were 
recorded every 10 minutes. The data retrieved 
from this dataset was from January 1, 2009 to 
December 31, 2016 with a total of 420,451 pieces 
of data. The real-time air quality dataset 
contained air quality in the region from August 
2022 to August 2023. After pre-processing, the 
datasets were divided into a test set and a 
training set with 60% of both datasets as training 
set and 40% as test set. ThinkPad E440 Ubuntu 
16.04 (Lenovo, Hongkong, China)  and  GTX 2070  

https://zx.bjmemc.com.cn/?timestamp=1718098118224
https://zx.bjmemc.com.cn/?timestamp=1718098118224
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Figure 5. Comparison of data transmission performance of wireless sensor networks.  

 
 
Super GPU were used in the study. TensorFlow 
(https://www.tensorflow.org/) and NVIDIA 
Jetson TX2 (Nvidia, Santa Clara, CA, USA) were 
used as deep learning framework and the 
network prediction platform, respectively. The 
number of input/output layer nodes was 10/1 
and the number of 1/2 hidden layer nodes was 
13/12. The learning rate, the number of 
iterations threshold, and the learning accuracy 
were set to 0.01, 1,000, and 0.1, respectively. To 
further validate the performance of the method, 
the FAIR model proposed by Celicourt et al. [3] 
and the Block Chain model proposed by Cheng et 
al. [4] were employed to compare the ED 
collection performance. 
 

Results and discussion 
 

Basic performance verification of ZigBee-BPNN 
model 
The data transmission efficiency of ZigBee WSN 
was analyzed and verified and compared with 
traditional ZigBee WSN. The traditional ZigBee 
WSN showed poor transmission performance 
with complete loss of data during transmission at 
the 10th node and subsequent nodes. Only the 6th 
node achieved a 100% data transmission rate 
(Figure 5a). Overall, the frame loss rate of 
traditional ZigBee WSN reached 62.57%. The 
transmission performance of the designed 
ZigBee WSN was significantly improved with 80% 
of  nodes  achieving  a  data  transmission  rate  of 

https://www.tensorflow.org/
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Figure 6. BPNN performance comparison. 

 
 
100% (Figure 5b). Some nodes demonstrated the 
highest frame loss rate of only 5.06%. The 
average frame loss rate of the proposed model 
was 4.31%, which was significantly reduced by 
58.26% compared to the traditional ZigBee WSN. 
The results indicated that the designed ZigBee 
WSN largely retained the original data and 
improved the reliability and availability of 
environmental monitoring data. The 
performance of BPNN for ED prediction was 
validated using the Jena Climate Dataset. The 
results showed that the loss value of traditional 
BPNN was always the highest one, while the 
optimized BPNN had achieved significant 
optimization and generally remained at the 
lowest level. Moreover, the optimized BPNN 
converged in the 30th iteration and was faster 
compared to other models with the average loss 
value of 0.001, which was a relative decrease of 
5.78% (Figure 6a). The accuracy and recall of the 
designed BPNN were 95.41% and 96.25%, 
respectively. However, the accuracy and recall of 
traditional BPNN were 78.33% and 79.62%, 
respectively, which decreased by 17.08% and 
16.63% compared to the optimized model. 
Compared with other models, the accuracy of the 
designed model increased by 7.91%, and the 
recall rate increased by 5.49% (Figure 6b). The 
optimized BPNN had better training performance 

compared to traditional BPNN and other 
methods. 
 
Specific application performance of ZigBee-
BPNN environmental data monitoring model 
The AQI indicator data from Beijing, China in April 
2022 was selected, and the predictive 
performance of BPNN before and after 
optimization was analyzed. The optimized model 
showed a prediction accuracy of 83.64% for CO, 
which was 12.29% higher than that of the 
traditional model (Figure 7a). The optimized 
model achieved an accuracy of 80.16 for 
predicting O3 pollutants, which was 18.57% 
higher than that of the traditional model (Figure 
7b). All models demonstrated good predictions 
for NO2, and the optimized model achieved a 
prediction accuracy of 91.77%, which was 15.46% 
higher than that of the traditional model (Figure 
7c). The predictive performances of each model 
on particulate matter with a diameter of 2.5 μm 
(PM2.5) and 10 μm (PM10) were shown in 
Figures 7d and 7f. The average accuracy of this 
optimized model reached 86.32% with an 
improvement of 11.98% compared to the 
traditional model. The prediction curves of each 
model for SO2 were shown in Figure 7e. The 
optimized model had a prediction accuracy of 
78.61%, which was an overall improvement of 
9.93% compared to the preoptimized model. The  
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Figure 7. Comparison of BPNN prediction performance before and after optimization. 

 
 
prediction accuracy of the proposed model was 
significantly improved with an average 
improvement of 11.24%. The study then analyzed 
the Mean Absolute Error (MAE) of each ED and 
the overall changes in AQI. The proposed model 
demonstrated the ability to accurately predict 

the daily air AQI with the average accuracy 
reaching 94.36% (Figure 8a). The results 
indicated that the proposed model provided 
certain references and significance for air quality 
control. The error values of the model for 
predicting   various   pollutants   were   shown   in 
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Figure 8. Analysis of model prediction effect. 

 
 
Table 1. Comparison of environmental data detection performance of each model. 
 

Index 
Model 

Proposed model FAIR Block Chain 

Data detection 
Handling capacity 8.17 bits/s 8.09 bits/s 7.45 bits/s 

Transmission delay 30.26 ms 29.98 ms 32.14 ms 

Index Proposed model BDT LSTM 

Data prediction 
Accuracy 94.36% 93.52% 94.19% 

MAE 0.31 0.36 0.32 
 

 
 
Figure 8b. The predicted MAE value for NO2 was 
the lowest one, only 0.22. The predicted MAE for 
O3 pollutant was the highest one, reaching 0.54. 
The average predicted MAE of the model was 
only 0.31. Combining the prediction curve, 
except for a few nodes with significant estimation 
bias, the predictions of most nodes were 
relatively consistent with the actual situation. 
 
The BDT classification model proposed by 
Mohammadian et al. [9] and the LSTM proposed 
by Huang et al. [10] were additionally used to 
compare the data prediction performances with 
proposed model. The results showed that the 
network throughput of the proposed model was 
relatively improved by 4.41%. The transmission 
delay of each model was within 35 ms with FAIR 
having the lowest transmission delay, a decrease 
of 0.93% compared to the proposed model. 
Compared with Block Chain, the proposed model 
reduced latency by 6.21%. Therefore, the 

proposed ZigBee network had the best overall 
performance in data detection. When comparing 
data prediction, the proposed model showed the 
best performance with the prediction accuracy 
being improved by 0.98% and the MAE value 
decreased by 1.35% (Table 1). The proposed 
model had good data detection and prediction 
performance.  
 
 

Conclusion 
 
An ED detection model based on ZigBee WSN was 
proposed based on the Internet of Things to 
facilitate the maintenance process of ambient air 
in this study. The results showed that the 
transmission performance of ZigBee WSN was 
significantly improved compared with the 
traditional model. There were only a small 
number of nodes with frame loss with a 
maximum loss rate of 5.06% and an average loss 
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rate of 4.31%. The accuracy rate and recall rate of 
the BPNN designed in this study were 95.41% and 
96.25%, respectively. Compared with the 
traditional BP network, the accuracy rate 
increased by 7.91% and the recall rate increased 
by 5.49%. In the specific simulation analysis, the 
results showed that the prediction accuracy of 
the proposed model for different air pollutants 
reached 85.49%, which was significantly 
improved compared with the traditional BP 
network with an average increase of 11.24%. The 
average prediction accuracy of AQI reached 
94.36%. The predicted MAE value for NO2 was 
the lowest, only 0.22. The MAE value of O3 
pollutant was the largest, reaching 0.54. The 
average predicted MAE value of the model was 
only 0.31. In comparison with other models, the 
network throughput of the proposed model was 
relatively improved by 4.41%. The transmission 
delay of the model was reduced by 6.21%. The 
proposed network model had better 
performance of data detection and prediction. 
However, the study only conducted on the data 
of a city in April 2022, and the overall data 
volume was small. The data collection range 
should be expanded in the future to further 
improve the accuracy of the model. 
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