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The computer numerical control gear hobbing machine emits a large amount of carbon dioxide during the actual 
processing and production, which seriously affects the ecological environment. The study proposed a data-driven 
combinatorial prediction model and constructed a multi-objective optimization strategy model for the predicting 
the carbon emission of the gear hobbing machine as well as reducing the production cost. The proposed model 
combined various prediction models such as support vector machines and artificial bee colony algorithms. The 
results showed that the average fitness of the optimal solution model computed by Pareto had a maximum value 
of 90 and a minimum value of 26.31. The value of optimal fitness was constant at 23.56. The maximum value of 
carbon emission prediction of the proposed model was 1.0 Kg, and the minimum value was 0.37 Kg. The study 
applied the model to the actual gear hobbing process, and the fitness value converged with only 135 iterations. 
After 135 iterations, the value remained constant at -14. The cost of machining decreased as the carbon emission 
increased and the cost was the highest at 0.69 Kg carbon emission, which indicated that the proposed multi-
combination drive prediction model was more accurate for carbon emission prediction of computer numerical 
control gear hobbing machine. Additionally, the approach performed better when it came to improving the multi-
objective model, which offered crucial technical support for the machinery manufacturing sector's goal of 
reducing emissions and saving energy.     
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Introduction 
 
The issue of global warming has become 
increasingly problematic in recent times. The 
primary factor contributing to the planet's rising 
temperature is the increase in carbon dioxide 
emissions into the atmosphere. The results of a 
survey indicated that the United States 
continued to be the world's biggest emitter of 
carbon dioxide, making up 23.7% of global 

emissions. About 11.73 tons of carbon dioxide 
are emitted annually per person in China, which 
makes up roughly 13.9% of the world's total [1]. 
The China Ministry of Industry and Information 
Technology has put forward two key points 
around the carbon reduction target. One is to 
promote the development of low-carbon 
manufacturing and reduce crude steel 
production. The second is to urge the 
transformation and upgrading of related 
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industries [2]. In this context, the machine 
manufacturing industry has identified a 
significant challenge of the achievement of low-
carbon manufacturing and environmental 
awareness within the green manufacturing 
sector while maintaining a balance between 
economic and environmental benefits [3]. The 
production and processing of gear instruments 
consumes a considerable quantity of energy. 
Some studies examined the potential for 
reducing energy consumption in computer 
numerical control gear hobbing machines 
(CNCGHMs). However, existing manufacturing 
machines including the CNCGHM have not 
considered the loss of the machine itself in their 
studies of low-carbon emission (CE) reduction [4, 
5].  
 
The low CE reduction of CNCGHM has attracted 
the attention of many scholars both domestically 
and internationally. Hu et al. discovered that 
accuracy was a crucial metric in assessing the 
effectiveness of machine tools and accuracy 
distribution in contemporary machine tool 
design. A MOO algorithm was then suggested to 
solve the model. The results showed that the 
algorithm accomplished a thorough optimization 
of both machining precision and manufacturing 
cost [6]. Zou et al. found that hob wear adversely 
affected the stability of dry hobbing accuracy and 
proposed a new strategy for tool wear to collect 
representative values of power consumption 
data throughout the development of thermal 
deformation. The results indicated that the 
accuracy of this online monitoring method of hob 
wear condition could reach more than 90% [7]. 
Liu and Zhu identified that upgrading the working 
model of non-circular gears became more and 
more important with the increasing demand for 
non-circular gears. The results showed that the 
model was more detailed for gear processing [8]. 
Ren et al. addressed the issue of the inspection 
process being extremely time-consuming 
utilizing precision measuring centers by 
proposing a framework for online evaluation of 
hobbing quality based on correlation-concerned 
vibration monitoring to evaluate gear profile 
deviation and gear lead deviation [9]. Wu et al. 

proposed a helical gear machining parameter 
optimization method for the problem that the 
use of unreasonable parameters in dry machining 
would lead to high cost. The method required the 
establishment of a three-objective optimization 
model of efficiency-cost-accuracy. The results 
indicated that the method had stronger adaptive 
multi-objective capability and training multi-
objective parameters was more advantageous 
[10]. 
 
Predictive models (PMs) are diverse and used in 
a variety of sophisticated domains. Brunton et al.  
identified an urgent need for safety-critical 
applications to incorporate machine learning 
techniques that were interpretable, 
generalizable, and certifiable. The results 
revealed that this innovative proposal had made 
a significant contribution to changing the 
scientific and industrial landscape [11]. Peng et 
al. found that inaccurate dimensions of 
composite laminates could affect the overall 
quantization framework and proposed a data-
driven polynomial chaotic unfolding model. The 
results showed that the model was highly 
applicable and could be used for multiscale 
buckling analysis, intrinsic frequency calculation, 
and reliability assessment [12]. To solve the issue 
of damage detection in multi-component and 
composite buildings, Pagani and Enea proposed a 
convolutional neural network-based building 
block model that created massive databases 
through finite element Monte Carlo simulations 
of randomly damaged structures and found that 
the model had a significant advantage for 
damage identification [13]. Kalina et al. found 
that materials with complex underlying 
microstructures could not be modeled efficiently, 
so a new data-driven multiscale framework was 
proposed. The core of the framework was that 
the entire loop would mine the required dataset 
completely autonomously. The results indicated 
that the proposed framework minimized the 
number of time-consuming microscale 
simulations [14]. Data-driven approaches 
garnered a lot of interest in materials research. 
Wang et al. suggested using deep learning and 
data-driven methods to determine some 
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performance connections for polymer 
nanocomposites and found that the model could 
successfully integrate the driving model while 
learning, increasing the effectiveness of learning 
[15]. 
 
Gear processing machine tools are highly 
technical and complex machine tool systems. 
GHM is one of the most widely used instruments 
in gear processing machine tools. The traditional 
mechanical GHM transmission has the 
disadvantages of low efficiency, poor precision, 
slow cutting speed, complex operation, and CE 
seriously over the standard [16]. Previous studies 
have proposed various optimization strategies 
for low-carbon operations of gear hobbing 
machines (GHMs). However, few studies have 
combined more than three or more PMs. This 
study suggested a multicombination-driven 
carbon emission prediction (CEP) model, which 
consisted of a combination of support vector 
machine (SVM), support vector regression (SVR), 
sparrow search algorithm (SSA), and adaptive 
boosting algorithm (Adaboost). Subsequently, a 
multi-objective optimization (MOO) function was 
employed to optimize the strategy of CNCGHM 
for CEs. Further, the study optimized the 
prediction of the multi-objective model to 
achieve accurate prediction of CE for CNCGHM 
and reduce the cost of energy consumption. This 
study combined the advantages of the four PMs 
to predict all aspects of GHM processing with 
improved accuracy. 
 
 

Materials and methods 
 

Presets for data-driven combinatorial modeling 
of CNCGHMs 
CNCGHM transmission performance is improved 
in all aspects to reduce CE and energy 
consumption. The fully automatic CNCGHM 
achieved digital control on all six motion axes (a, 
b, c, x, y, and z axis) necessary for GHM. Its 
addition of the U-axis and V-axis realized 
automatic loading and unloading fully automatic 
control [17]. Processing instruments were 
accompanied by CE. Due to the long working 

cycle of the entire gear processing and the 
complexity of the process, it is hard to predict the 
CE of the CNCGHM. Therefore, the study started 
the calculation from its driving model, collected 
the basic values, and gradually formed the 
complete CE data set, which was used for the 
superposition calculation. The study took the 
complete production process of a gear as a life 
cycle and focused on each step of its resource 
consumption. Meanwhile, the study divided such 
losses into two types of CE, material flow and 
energy flow, which made it easy to visually 
distinguish and record the emissions of different 
processes. The CE operation model of GHM 
constructed in the study was shown in Figure 1. 
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Figure 1. The carbon emission operation model of the gear hobbing 
machine. 

 
 
The main energy consumption of CNCGHM can 
be categorized into machine power system and 
machine auxiliary system, which contains 12 
types of consumption systems such as main 
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spindle mechanical drive, table mechanical drive, 
cooling power drive, and so on [18]. Based on 
this, the study carried out a preliminary design of 
the CEP model of GHM with multiple linear 
regression model (MLRM) and logistic regression 
PM. The MLRM was suitable for calculations with 
more variables as below. 
 

0 1 1 2 2 i iW Z Z Z   = + + + +L                           (1) 

 
where W  was the outcome variable derived 
from the calculation. Z  was the initial variable 

imported by the calculation.   was the angular 

coefficient corresponding to the variable 

indicator. 0  was the interception range in the 

operational module. The logistic regression PM 
was effective in predicting the probability, which 
was calculated as follows. 
 

1
dx e

rx
dt p

 
= − 

 
                                                        (2) 

 
where t was the time that the model needed to 
predict. x was the CE generated during operation. 
e was the risk factors during operation. p was the 
maximum acceptable CE generated by the whole 
prediction session. Combined prediction-driven 
models could combine the strengths of each PM 
to achieve more accurate predictions. SVM 
algorithm is currently mainstreamed in data 
review, image processing, risk prediction, etc. 
due to its excellent generalization ability 
significantly [19]. The operation logic of SVM 
algorithm was to calculate at least one global 
optimal solution first, and then ensured that all 
the global training data had the shortest 
displacement distance from the global optimal 
solution with the calculation formula below. 
 

0g h + =                                                                (3) 

 
where   was the normal vector. g  was the 
coordinates of the training data. h  was the offset 
degree. Then the position of this data point (DP) 
to the optimal solution was shown in Equation 
(4). 
 

( ) 1a ad y x b=  +                                                (4) 

 

where ax  and ay  were the location of the global 

optimal solution. d  was the shortest distance by 
which the location of the upper boundary of the 
optimal solution range was introduced.  
 

1, 1a ay x b= +  +  +                                             (5) 

 
In Equation (5), the location of the lower 
boundary of the optimal solution range was given 
by Equation (6). 
 

1, 1a ay x b= −  +  −                                             (6) 

 
The DPs in the boundary range were collectively 
referred to as support vectors. The larger the 
spacing between the support vectors, the better 
the prediction. The calculation of distance 
maximization was shown in Equation (7). 
 

( )

( )

2

,

1
min

2

1

b

a

w

y x b



 




=


 +  +

                                               (7) 

 
where   was the distance between the two DPs 
at the nearest location of the lower and upper 

boundaries. w  was the separation distance 

between the upper and lower boundaries. The 
phenomenon of positional distance discrepancy 
that occurred in SVM would result in the loss of 
data that was not within the maximum range of 
the optimal solution, thereby introducing a bias 
in the predictions made. SVR modeling algorithm 
could effectively solve this problem as shown 
below. 
 

( ) ( )
1

1 ( )
n

i i a n

i

f i Z x x b 
=

+ = −   + g
           (8) 

 

where i  was the Lagrange multiplier. ( )1f i +  

was the decision classification model. Z  was the 
model computational power. After the driving 
model combined SVM and SVR algorithm models, 
it still lacked the warning system and the 
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adaptive effect was poor. Therefore, the research 
again proposed to incorporate the sparrow 
algorithm into the driving model. The 
fundamental concept of SSA was to partition the 
search space into many subspaces, and then 
search each subspace independently until the 
target was located or the search space was 
emptied [20]. The SSA calculation was shown in 
Equation (9). 
 

( )
( )

( )

,

max,

,

exp ,
1

,

i j

i j

i j

i
X t if J SE

tX t

X t Q R if J SE



  
 −   

+ =   


+  

     (9) 

 

where ,i jX  was the DP location. J  was the alert 

value of the prediction range. SE  was the safe 
value of the prediction range. R  was the 

element matrix. Q  was the random number 

when the data were normally distributed. After 
the early warning system was integrated into the 
prediction-driven model, the model function 
tended to be perfect in the theoretical sense. 
However, the model had to take into account the 
false indications produced by the weak learner 
during training, and corrections needed to be 
made in time. Adaboost classification could 
effectively solve the weak learner information 
classification problem and could be calculated as 
follows. 
 

( )( )
1

exp
N

m mi m a m a

i

Z w y G x
=

= −                           (10) 

 

where mZ  was the specification factor. m  was 

the weight coefficient. ( )m aG x  was the weak 

classifier. miw  was the enhanced classification 

factor. Then, the upper error limit of the 
Adaboost could be deduced and calculated as 
below. 
 

( )max , 1,2, ,m a m aE y G x a N= − = L                 (11) 

 

where mE  was the computation-time error ratio 

of the weak classifier. The addition of Adaboost 
brought a qualitative improvement to the overall 

drive PM performance. Therefore, the SSA-AVM-
Adaboost model was transported in four steps 
including finding the best solution, a weak 
learner of the Adaboost model; training to 
extract the number of weak learners; computing 
and training the parameters as well as the 
learners by combining the first two steps; 
outputting the training results and putting them 
in use. The operational flow of the CDPM 
proposed in the study was shown in Figure 2. 
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Figure 2. The operational flowchart of the combination driven 
prediction model. 

 
 
Multi-objective low-carbon optimization 
strategy for CNCGHMs 
After the initial construction of the CDPM, the CE 
of the GHM was also able to be initially predicted. 
In the process of machining and making gears in 
CNCGHM, there were many sources of CE, and 
the definition was complicated, often involving 
the machine tool itself emissions including heat 
production, idling, on and off, etc., as well as the 
lubrication system involved in machining raw 
materials. The data resources in this study were 
based on the YS3120CNC6 model hobbing 
machine equipment and workpiece technical 
table (Chongqing Machine Tool Group Co., Ltd., 
Chongqing, China). The parameter information in 
the data table was used as the initial value 
applied to the actual experiment. The entire 
machine process of a machine tool involved a 
large number of emission objectives. Therefore, 
multi-objective CE nodes needed to be 
optimized. The key to judging the effectiveness of 
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Figure 3. Cutting status of gear hobbing machine after adding constraint conditions. 

 
 
CNCGHM's CE control was to evaluate tool wear, 
which was also a complex aspect of CE. The 
machining tool loss was proportional to the 
length of the machining time, and its cost was 
calculated as follows. 
 

1

oi

Ti t

i n ti

t
Z W h

T

=                                                       (12) 

 

where 1Z  was tool cost. th  was tool price. tiT  

was the tool life. TiW  was the actual quality of the 

tool. oit  was the tool replacement frequency. 

The CE function for hobbing was shown in 
Equation (13). 
 

2 i

i n

Q B


=             (13) 

 

where 2Q  was the total amount of CE for the 

production of the n th roller. iB  was the 

individual CE of the n th gear. Cutting volume 
was the main consumption of CE. Controlling the 
range of cutting amount and constraining the 
numerous variables could control the total CE 
more effectively. The cutting force constraint was 
calculated below. 
 

maxcT T             (14) 

 

where cT  was the cutting force constraint. The 

equipment power constraint of CNCGHM was 
calculated as shown in Equation (15). 

maxbR R             (15) 

 

where bR  was the power constraint of CNCGHM. 
  was the sum of the motor power of the spindle 
and the power supplied to the motor. The 
model's forecast of the CE was significantly more 
accurate when the multi-objective PM fell inside 
the restrictions. The cutting process after adding 
constraints was shown in Figure 3. The spindle 
hob speed n of the GHM was expanded in the y-
axis. The worktable was used as a platform for 
instrument carrying and workpiece machining. 
The workpieces needed to be conveyed into the 
GHM from the z-axis. The trajectory of the hob 
operated cyclically around the four points of A, B, 
C, and D. The hob needed to pass through the 
hob front distance BlT, the cut-out safety distance 
Ue, the existing travel distance BoT, and the cut-
out safety distance Ua. After the cutting process 
was optimized, there were still multi-objectives 
to be optimized. The Pareto optimal solution 
(POS) space was chosen to further handle the 
MOO problem (Figure 4). The study assumes two 
objective functions. For solution ×4, no other 
solution could be found in the variable space that 
could outperform solution ×4, and solution ×4 
was the POS. Moreover, no solution could be 
found in the entire solution space that was 
closest to the origin. Then solution ×1 was also 
the optimal solution. The study took advantage 
of the optimization of POS for multi-objective 
problems and adapted the PM. Eventually, the 
CNCGHM machining process model was built for 



Journal of Biotech Research [ISSN: 1944-3285] 2024; 19:102-113 

 

108 

 

x1

x3

x2

x4

 Pareto optimal solution space

f2

 

 

Figure 4. Pareto optimal solution operation space. The purple pentagram was the listed solutions. The red pentagram represents the POS. The net 
circled range indicated the objective space. 
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Figure 5. Optimization of multi-objective system for CNC gear hobbing machine. 

 
 
minimizing the cost of machining gear loss and 
CE, and multi-constraint multi-objective based on 
the theory (Figure 5). 
 
To verify whether the combined PM of SSA-SVR-
SVM-Adaboost proposed by the study was more 
accurate in predicting the CE of CNCGHM, a 
series of comparison experiments were 
performed using Intel® Xeon® Platinum 8124M, 
64 GB RAM, Windows 10, 64-bit operating 
system, C++, and Matalab2018b (MathWorks, 
Natick, Massachusetts, USA). 100 sets of data 
were randomly sampled to ensure that the 

parameters of the processed gear samples were 
consistent. The training sample set consisted of 
50 sets and the test sample set consisted of the 
remaining 50 sets. In addition, to verify the 
degree of carbon emission optimization of the 
model in multi-objective production, four 
commonly used cloud manufacturing algorithms 
including artificial bee colony algorithm (ABC), 
improving the bee colony algorithm (IABC) for 
model research, particle swarm optimization 
(PSO), and ant colony optimization (ACO) were 
selected for path optimization, financial 
prediction, and multi-objective comparison.  
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Table 1. Variable parameter settings for SSA-SVR-SVM-Adaboost combination prediction model. 
 

Variable parameters Numerical value Variable parameters Numerical value 

Population size NP 20 Maximum number of iterations T 100 
Penalty parameters C [0.01, 100] Safety value ST 0.6 
Discoverer ratio PD 0.7 Proportion of guards SD 0.2 

Cross validation fold V 5 Width parameter g [0.01, 1,000] 
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Figure 6. Optimal solution fitness value curve. 

 
 

Results and discussion 
 

Performance analysis of CNCGHM based on 
data-driven combination model and multi-
objective optimization strategy 
The algorithmic configuration and the restriction 
parameters used in the study for the proposed 
model were shown in table 1. 50 sets of test data 
were imported into the combined PM of SSA-
SVR-SVM-Adaboost model. The model was 
executed in a sequence that began with the 
determination of the range of solutions and 
subsequently progressed to the identification of 
the optimal solution. The root mean square error 
in the value of the fitness function was employed 
as the evaluation index. The average fitness (AF) 
value of the final optimal solution range and the 
best fitness value were shown in Figure 6. The AF 
curve of the model varied greatly with the AF 
value showing an extremely fast decreasing trend 
until the number of iterations reaching 5 and a 
minimum and maximum values of 26.31 and 90, 
respectively (Figure 6a). The optimal fitness curve 

of the model showed an overall smooth trend, 
which only floated and changed before 3 
iterations reaching a maximum value of 25. After 
3 iterations, the value of the optimal fitness was 
constant at 23.56 (Figure 6b), which resulted in a 
penalty parameter of 15.55 and a width 
parameter of 1.9 for the optimal fitness. The 
optimal fitness of the proposed model was less 
variable and had a high degree of adaptation. In 
addition, three different PMs including SSA-SVR-
SVM-Adaboost, SVM, and artificial neural 
network (ANN) were selected to further validate 
the prediction performance of the proposed 
model. The results showed that the lowest CE for 
the proposed model was studied in the training 
set with a maximum value of 1.7 Kg and a 
minimum value of 0.38 Kg (Figure 7a). The overall 
CE curve for SSA-SVR-SVM-Adaboost had less 
variation compared to the other two PMs and 
was the closest to the true CEP value curve. The 
maximum predicted value of CE for the SVM 
algorithm model appeared between 0 and 5 
sample points as 2.3 Kg,  and the minimum value 
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Figure 7. Comparison of carbon emissions between the training and testing sets. 

 
 
appeared between 15 and 20 sample points as 
0.56 Kg. The fluctuation of the ANN model curve 
was done large, and the minimum and the 
maximum values were 2.5 Kg and 0.44 Kg, 
respectively, which were consistent with the 
SVM appearing intervals. The CEP curve of the 
proposed model was the closest to the real 
predicted curves in distance. The maximum value 
of CEP of the proposed model appeared between 
0 and 5 sample points as 1.0 Kg, and the 
minimum value appeared between the 10th  
sample points as 0.37 Kg (Figure 7b), which 
suggested that the proposed model's accuracy 
matched the real value. 
 
The optimization of CNCGHM for practical 
applications 
The proposed model was further evaluated by 
the actual GHM machining process for its 
practical application. The logarithmic change in 
fitness values for two single-peak tests of four 
algorithms applied to a 50-dimensional operating 
environment was shown in Figure 8. Two test 
functions, f1 and f2, were selected to compare 
the logarithmic change in the single-peak fitness 
value. As the iterations increased, IABC required 
the least iterations to reach the convergence 
effect, and the adaptation value converged with 
only 135 iterations with a constant value of -14 

(Figure 8a). The PSO and ACO algorithms 
demonstrated similar effects and had not 
converged for the time being. The ABC curve 
showed a trend of regular convergence. The 
number of iterations used for the convergence of 
IABC for f2 was less compared to f1, and the 
curve stabilized after only 21 iterations with the 
value being constant at -15 after 45 iterations 
(Figure 8b). The other three algorithms, except 
ACO, only ABC and PSO algorithms showed a 
tendency to converge after 400 iterations, and 
the results were unsatisfactory. The results 
indicated that the algorithms of proposed model 
had better convergence at single-peak values 
when applied in practice. The convergence of the 
four algorithms of f1 was close to the single peak 
curve. The iterations used for the convergence of 
IABC remained the least with 45 iterations, and 
the value of the subsequent iterations stabilized 
around -16. PSO did not show any convergence 
for the time being. ACO converged slowly, and 
the effect was not obvious. ABC convergence 
effect was better than PSO and ACO, but the 
same convergence trend was not obvious. IABC 
had a better effect of convergence trend (Figure 
9a). IABC converged with the least number of 
iterations, which started to converge rapidly at 9 
iterations with a value of -16.5. The convergence 
trend   of  ABC  showed  a  stepwise  decline  and 
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Figure 8. Convergence curve of unimodal test function. 
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Figure 9. Convergence curve of multimodal test function. 

 
 
eventually stabilized at 460 iterations with a 
value of -13. The PSO and ACO algorithms both 
did not have any trend of convergence, and the 
convergence effects were poor (Figure 9b). To 
further verify the superiority of the proposed 
model for MOO, the study introduced a fast non-
dominated sorting genetic algorithm 2 (NSGA2) 
to simulate and analyze the comparison with 
IABC. The Pareto frontier solution range of IABC 
was larger than the optimal solution of NSGA2, 
which suggested that IABC could dominate all the 
optimal solutions of the domain class. The 
optimization of cutting parameters by IABC 
decreased the machining cost as the CE 

increased, and the cost was the highest at 0.69 Kg 
CE (Figure 10a). The NSGA2 Pareto frontier 
optimal solution range curve was second to IABC. 
The results showed that the proposed model had 
great advantages both in terms of its ability to 
predict CE and multi-objective parameter 
optimization, which was effective in reducing CE 
as well as saving cost of CNCGHM (Figure 10b). 
 
The SSA-SVR-SVM-Adaboost multi combination 
drive CNCGHM CEP model proposed in the study 
utilized IABC and NSGA2 to calculate the POS of 
the multi-objective optimization model. Among 
the  100 sets  of  randomly  sampled  data, the AF 
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Figure 10. Pareto frontier carbon emissions and corresponding cost comparison. 

 
 
value of the optimal solution model showed a 
rapid downward trend before 5 iterations. The 
maximum value was 90 at 0 iterations, and the 
minimum value was 26.31 between 60 and 80 
iterations. Zhang et al. also obtained similar 
results through experimental calculations, 
indicating that the fitness range difference of the 
optimal solution of the proposed model was 
relatively small [21]. The maximum fitness value 
of the model before 3 iterations was 25. 
Moreover, after 3 iterations, the optimal fitness 
value remained constant at 23.56. The penalty 
parameter for optimal fitness was 15.55, while 
the width parameter was 1.9. A constant fitness 
required fewer iterations, indicating strong 
adaptability of the model. The carbon emissions 
of the model proposed in the training set were 
the lowest with a maximum value of 1.7 Kg 
occurring between 20 and 25, and a minimum 
value of 0.38 Kg occurring between 25 - 30. Liang 
et al. compared the carbon emissions of GHMs by 
proposing a model and finally obtained 
approximate results [22], which indicated that 
the combination drive prediction model 

proposed by the research was more suitable for 
CEP scenarios of CNCGHMs with the most 
accurate prediction results. It could minimize 
processing costs and optimize the multi-objective 
model to the greatest extent possible. 
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