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Introduction 
 
The geomagnetic field serves as the inherent 
coordinate system of nature, and its numerous 
characteristic parameters establish a direct 
correspondence with the near-earth space, 
rendering it a dependable source of information 
for long-distance migration, navigation, homing, 
and other navigational behavior [1-3]. The study 
investigates the navigation method of 
geomagnetic bio-inspired homing, which draws 
inspiration from animal homing behavior utilizing 
the geomagnetic field and does not rely on a pre-
existing database [4, 5]. 
 
Homing behavior is a widespread phenomenon 
in the natural world. It has been demonstrated 
that certain animals such as turtles, homing 
pigeons, and salmon possess the ability to 

perceive the magnetic field characteristics of 
their nests and birthplaces through a process 
known as ‘imprinting [6, 7]. These animals rely on 
their perception of magnetic field parameters to 
navigate back to their destinations even after 
traversing vast oceans or covering thousands of 
kilometers. In the process, it would be hard to 
imagine if their simple brains could record a 
complete map of the geomagnetic distribution. 
To reveal this amazing behavioral phenomenon, 
scholars have done a lot of research. With the 
help of satellite technology, scientists analyzed 
the geomagnetic data characteristics of long-
distance migratory animals and confirmed that 
the change of migration route was related to the 
change of magnetic field [8]. With the help of 
comparative analysis, the phenomenon and 
ability of biological homing using magnetic field 
are confirmed [1, 2, 9]. As the sensing organ of 
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magnetic field in animals, magnetic receptors 
have been found in a variety of organisms [10, 
11], which further confirms that animals have the 
ability of magnetic navigation. Monteil et al. 
demonstrated the existence of a priori 
geomagnetic database in the biological brain 
[12]. In the field of geomagnetic homing 
modelling, it is still mainly based on assumptions 
and conjectures, which is in its infancy. 
Winklhofer proposed the biomimetic navigation 
model of map and compass, in which the 
magnetic field was controlled by living beings 
[13]. Dora assumed that the magnetic field 
parameter distribution changed linearly and 
proposed a predictive navigation model [14]. 
According to historical data, the magnetic field 
distribution in the unreached area can be 
inferred to realize the purpose of navigation. 
There are two disadvantages to the two methods 
described above. One is that the calculated 
homing route is certain and unique, which does 
not conform to the natural biological path. 
Second, the influence of abnormal magnetic field 
on homing cannot be overcome. Previous studies 
regarded the magnetic field parameters as 
approximate linearization and used the dynamic 
estimation method to calculate the homing route 
[15, 16]. This method could obtain a clear homing 
route in the area with slow magnetic field 
change, but it was difficult to deal with the area 
with complex magnetic field change and 
abnormal magnetic field. Researchers 
constructed a biomimetic homing model based 
on multi-objective search, which was proposed 
from the perspective of biological multi-
parameter perception of magnetic field. The idea 
of evolutionary search was used to obtain the 
navigation path [5, 17]. This method had strong 
robustness and could overcome the influence of 
magnetic field anomaly on homing behavior 
through behavioral constraints. However, the 
uncertainty of this method was obvious, and the 
search time was random.  
 
To solve the above problems, inspired by the 
migration behavior of sea turtles, we proposed a 
diversity-first geomagnetic biomimetic homing 
method with the help of the idea of evolutionary 

search to track the navigation solution. Through 
this study, the mechanism of the uncertainty of 
homing time was analyzed, and the influence of 
each evolutionary operation on population drift 
was clarified. In addition, the diversity priority 
search strategy was given from the perspective of 
population migration and the dynamic change of 
homing solution. Further, based on the TES 
homing algorithm, a diversity priority homing 
search algorithm was designed. The effectiveness 
and rationality of the proposed algorithm were 
verified by simulation analysis.  
 
 

Materials and methods 
 
Geomagnetic bionic homing  
Geomagnetic field is the inherent field of the 
earth, which has a variety of characteristic 
parameters. It is a natural navigation information 
source in nature and provides reliable navigation 
clues for many animals. In the context of no prior 
geomagnetic database, the homing process of 
animals starting from any point k on the surface 
to the established destination T by using the 
perception of magnetic field changes can be 
summed up as the process of convergence of 
multiple parameters of the geomagnetic field to 
their respective goals according to the homing 
path (MOMP) with the help of the multi-objective 
theory. Without loss of generality, it is 
characterized as follows. 

   

   (1) 
  
where, k was the magnetic field feature set at any 
position. n was the dimension of the 

geomagnetic field. 𝐁𝑘 = {𝐵1
𝑘，𝐵2

𝑘，⋯，𝐵𝑛
𝑘} . 

Since no geomagnetic map was established in the 
search process, and the homing behavior did not 
depend on the change of geographical position, 
the location label could be regarded as the search 
time label. G was the path constraint function, 
which was composed of the magnetic field 
parameter set B, the search behavior u and k. At 

the time with 𝐁𝑘 = 𝐁𝑇, the function F achieved 

 
min𝐹 𝐁, 𝑘 =  𝑓1 𝐵1 , 𝑘 , 𝑓2 𝐵2 , 𝑘 ,⋯ , 𝑓𝑛 𝐵𝑛 , 𝑘  

𝑇

𝑠. 𝑡.  𝐺(𝐁, 𝑘,𝑢)
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the minimum value, i.e., the carrier reached the 
target point T. From the perspective of multi-
objective optimization, through the perception 
of the surrounding magnetic field environment at 
different times, the Pareto solution set satisfying 
equation (1) could be obtained by the carrier. 
Connecting the Pareto solution sets at 
consecutive times could form a homing path 
connecting the starting point and the ending 
point as shown in Figure 1. 
 
 

PS(u)

k

X

PS(u)Pg(u)

Pg(u)

O  
 
Figure 1. Dynamic distribution diagram of spatial solutions. 

 
 
𝑃𝑔 𝑢  was the optimal solution and 𝑃𝑠 𝑢  was 

the boundary of Pareto solution. Affected by the 
distribution of magnetic field parameters, the 
range and gradient direction of Pareto solution 
changed with time. In the actual process of 
homing, due to limitations in the magnetic field 
measurement method, the carrier's perception 
of changes in magnetic field parameters was 
posteriori in nature. Only after the carrier moved 
itself and generated corresponding positional 
changes, it could obtain information about 
magnetic field changes along its moving 
direction. However, the carrier's motion 
capability was preferred, and the distribution of 
magnetic field parameters outside the homing 
path remained unknown. When 𝑃𝑔 𝑢   changed, 

the carrier failed to promptly respond to dynamic 
variations in the solution curve, thereby risking 
loss of tracking accuracy. 
 
Homing search strategy with diversity priority 
In the case of limited ability of magnetic field 
sensing and environmental exploration, using the 
idea of population evolution to conduct 

geomagnetic homing search is undoubtedly an 
excellent homing strategy.  
 
1. Uncertainty analysis in homing 
In the process of homing, the search behavior 
was used to construct the population sample. 
The path constraint function 𝐺 was used as the 
sample evaluation function, and the evolutionary 
population was sequential evolved by executing 
the population sample. Considering the 
population size as 𝑁𝑝𝑜𝑝 , each possible 

population distribution was regarded as a state, 
and 𝑆𝑝𝑜𝑝 𝑘  represented the population sample 

distribution state at time 𝑘 . All possible 
population states formed the finite state space 𝐴, 

whose cardinal number was |𝐴| = 2𝑁𝑝𝑜𝑝 . 
Obviously, 𝐴  was a finite state space. The 
evolutionary process of each generation in a 
population is considered as a transfer process 
from one state to another, which is achieved 
through the operator of reproduction, 
elimination, and mutation. Let the state 
transition matrix of replication operation, 
elimination operation, and mutation operation 
be R, E, and M, respectively. At the time 𝑘 → 𝑘 +
1 , the population state transition could be 
represented by equation (2). 
 

      (2) 
 
Among them, at 𝑘 + 1 , the population stated 
𝑆𝑝𝑜𝑝 𝑘 + 1  two transfer processes based on the 

evaluation results of the sample using the taxis 
constraint function G. If 𝐺 ≤ 0 , a new state 
𝑆𝑝𝑜𝑝 𝑘 + 1  was obtained by replicating R and 

mutating M from the previous state 𝑆𝑝𝑜𝑝 𝑘 . On 

the other hand, if 𝐺 > 0, a new state 𝑆𝑝𝑜𝑝 𝑘 +

1  was obtained by eliminating E and mutating M 
from the previous state 𝑆𝑝𝑜𝑝 𝑘 . 

 
(1) Reproduction operator 
The reproduction operator transfers the 
population from one state to another by 
replicating high-quality samples and increasing 
the distribution probability of high-quality 
samples. The transfer process described herein 

𝑆𝑝𝑜𝑝(𝑘 + 1) =  
𝑴 ⋅ 𝑹 ⋅ (𝑆𝑝𝑜𝑝(𝑘))    𝐺 ≤ 0

𝑴 ⋅ 𝑬 ⋅ (𝑆𝑝𝑜𝑝(𝑘))  𝐺 > 0
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was a directed transfer, constrained by the 
fitness of the samples, which facilitated the 
convergence of population samples towards 
high-quality ones. This phenomenon could be 
denoted as 𝑆 𝑥 → 𝑆∗ 𝑥 . After multiple 
replication operations, the high-quality 
individuals in Pareto solution set would gradually 
occupy the evolutionary population, making their 
sample probability tend to 1. In other words, the 
reproduction operation facilitated the 
convergence of the population towards samples 
with higher fitness, thereby establishing a distinct 
directional movement pattern within the search 
space. At the same time, the rate of population 
state transfer was affected by the depth of 
replication. The high transfer speed could 
facilitate population convergence towards the 
optimal solution, yet it might also lead to 
premature convergence of the population. Once 
the optimal solution changed, the phenomenon 
of population drift would occur. In other words, 
the replication operation helped the evolutionary 
population to reach the mature state 𝑆∗ , but 
when the solution curve changed and the optimal 
solution 𝑥∗  was not in the population, the 
replication operation alone could not make the 
population entering the new mature state 𝑆′∗. In 
this case, 𝑆∗ and 𝑆′∗ were not connected, i.e., the 
algorithm lacked dynamic search capability. 
 
(2) Elimination operator 
The elimination operator is an evolutionary 
operation related to fitness evaluation results. It 
generates new individuals by means of 
undirected transfer, and promotes the 
undirected transfer of population states, so as to 
facilitate the interworking between different 
states. The intercommunication ability was 
independent of the initial state of the population. 
However, the elimination operator has a 
relatively limited role in promoting population 
intercommunication, mainly because the 
selection of optimal samples can inhibit the 
effects of culling operations. At the onset of the 
search, the elimination operation can facilitate a 
breadth-first exploration by providing more 
comprehensive insights into the environment. 
However, once an optimal solution is obtained at 

a given time, the population tends to converge 
towards that sample, thereby increasing the 
likelihood of distribution bias towards optimal 
solutions. Consequently, samples with lower 
fitness values gradually diminish, leading to 
reduced occurrences of elimination operations 
and indirectly attenuating their impact on inter-
state interactions within the population. The 
elimination operation is an evolutionary process 
closely associated with the evaluation of fitness, 
which facilitates the generation of novel 
individuals through undirected transfer and 
readily influences the overall population 
dynamics.  
 
(3) Mutation operator 
To facilitate intercommunication among the 
population states, the introduction of mutation 
operators is very necessary. The mutation 
operator acts on the individual of the population 
independently and causes the individual to 
produce variation in the form of equal 
probability, causing the population state to shift 
aimlessly. From two perspectives, on one hand, 
the mutation operator employs an undirected 
approach to generate novel samples, promoting 
population divergence and facilitating inter-
population communication. On the other hand, it 
impedes population convergence, potentially 
resulting in a gradual degradation of the trend 
characteristics of evolutionary methods and 
entering a stochastic search stage that reduces 
algorithmic convergence speed. Considering the 
population state transfer perspective, we 
analyzed the action mechanism of each relevant 
operation on population drift. Among them, the 
replication operator represented a directional 
operation that facilitated convergence of the 
population towards a specific absorption state 
and effectively reduced population diversity, 
which was a key factor contributing to population 
drift. On the other hand, elimination and 
mutation operators represented astatic 
operations that generated new sample 
individuals, thereby enhancing its diversity, and 
mitigating the occurrence of population drift. 
However, while the replication operation served 
as primary driver of population drift, it also 
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played a crucial role in promoting algorithm 
convergence. Conversely, the elimination and 
mutation operations facilitated 
intercommunication among population states 
but might impede the speed of algorithm 
convergence. To strike a balance between 
suppressing population drift and ensuring 
optimal search performance, effective 
coordination among these three evolutionary 
operations was essential. 
 
2. Population drift suppression strategy 
The analysis in the preceding section revealed a 
strong correlation between the emergence of 
population elegance and population diversity. 
Consequently, a Diversity First (DF) based 
strategy for suppressing population drift was 
designed while ensuring algorithm convergence. 
Assuming that, in the homing process, 𝑥𝑖

𝑛and 𝑥𝑗
𝑚 

denoted the optimal solutions 𝑥𝑛  at time 𝑖 and 
𝑥𝑚 at time 𝑗 , respectively, a behavior distance 
𝑑𝑖𝑗 𝑥

𝑛, 𝑥𝑚 , denoted as 𝑑𝑖𝑗 , where 𝑟 

represented the radius of the region occupied by 
the containing absorption state. 
 
 
a. Internal migration 

•

•
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b. External migration  
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Figure 2. Schematic representation of population sample migration 
mechanism. 

The internal migration was illustrated in Figure 
2a, where the distance 𝑑𝑖𝑗  between 𝑥𝑛  and 𝑥𝑚 

was smaller than the radius of the attraction 
domain 𝑟 , indicating that 𝑥𝑚  fell within the 
existing state 𝑆 𝑖 . On the other hand, Figure 2b 
depicted external migration, characterized by 
𝑑𝑖𝑗 > 𝑟  and exclusion of 𝑥𝑚  from the existing 

state 𝑆 𝑖 , thus making it a new sample type. In 
the case of internal migration as depicted in 
Figure 2a, where the population included 𝑥𝑚, the 
transfer process from state 𝑆 𝑖  to 𝑆 𝑗  could be 
achieved through directional transfer with a 
transfer probability denoted as 𝑃𝑠 𝑗|𝑖 . 
Conversely, for external migration illustrated in 
Figure 2b, where 𝑥𝑚  was not presented in the 
population, the transfer process from state 𝑆 𝑖  
to 𝑆 𝑗  could only occur with a certain probability 
if 𝑥𝑚 was regenerated, and this probability was 
denoted as 𝑃𝑠

′ 𝑗|𝑖 . According to the analysis 
results, 𝑃𝑠 𝑗|𝑖  exhibited significantly higher 
values compared to 𝑃𝑠

′ 𝑗|𝑖 . Expanding the range 
of the attractive domain emerged as one of the 
most intuitive approaches for enhancing 𝑃𝑠 𝑗|𝑖 . 
By enlarging the radius 𝑟  of the attraction 
domain, it became possible to accommodate a 
larger population 𝑥𝑚 , thereby transforming 
external migration into internal migration and 
increasing the transfer probability 𝑃𝑠 𝑗|𝑖 . 
However, an indiscriminate increase in 𝑟  might 
lead to population divergence, impeded 
algorithm convergence speed, and prolonged 
homing search time. Therefore, considering a 
moderate expansion of the radius, acceptable 
homing time constraints could facilitate 
completion of transfer processes within a single 
attraction region as much as possible and 
effectively inhibit population drift. In addition, 
the convergence rate of the algorithm could also 
be considered as an indicator of population 
diversity change. The migration rate of the 
population represented the change rate of 
population diversity, and rapid drift facilitated 
the rapid convergence of the population towards 
a new attractor region. However, due to complex 
and unknown background factors, deceptive 
issues might arise during this process. It should 
be noted that the new attractor kernel did not 
necessarily represent the optimal solution, which 
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often led to local convergence dilemmas. The 
slow drift speed, however, prolonged the 
existence of the old attraction domain, hindering 
timely tracking of solution curve changes by the 
algorithm and thereby impacting its long-term 
performance. To address this issue, it is 
necessary to consider the rate of change in 
population diversity. 
 
 

Results and discussion 
 
Algorithm of geomagnetic bio-inspired homing 
A geomagnetic bio-inspired homing algorithm 
based on TES-DF was designed by introducing DF 
population drift suppression strategy based on 
TES homing algorithm [5]. The distribution 
entropy was utilized for quantifying population 
diversity, and a correlation between the 
distribution entropy and the attraction area 
radius was established. Building upon a 
fundamental bionic navigation algorithm and DF 
suppression strategy, an enhanced bionic 
navigation algorithm based on TES-DF was 
proposed, accompanied by a detailed description 
of its workflow. 
 
Diversity measurement based on behavioral 
entropy 
At present, diversity has received extensive 
attention in the performance research and 
construction of evolutionary algorithms [18-20]. 
However, the quantitative description of 
diversity is relatively few. Most studies describe 
population diversity by measuring the location 
differences of sample individuals in multiple 
spatial dimensions, which has some 
shortcomings in population search ability and 
attraction domain scale description. In general, 
the diversity obtained when individuals are far 
away from the majority is similar to the diversity 
obtained when the majority is dispersed. For 
these reasons, distribution entropy was 
introduced here to describe the diversity of 
population quantitatively. Distribution entropy is 
defined as that, assuming that the class of 
behavior is 𝑀, each behavior can be expressed as 
𝑢1, 𝑢2, ⋯ , 𝑢𝑀. At a certain moment in a group of 

evolution, the ratio of all kinds of behavior in 
group respectively as 𝑃 𝑢1 , 𝑃 𝑢2 ,⋯ , 𝑃 𝑢𝑀 , 

satisfy the ∑ 𝑃 𝑢𝑖 = 1𝑀
𝑖=1 . Thus, distribution 

entropy 𝐻 can be defined as:  
 

  (3) 
 
where 𝐻 is a strictly concave function with non-
negative, symmetric and additive properties in 
distribution space. The distribution entropy 𝐻 
describes population diversity from the 
perspective of behavior types. The distribution 
probability of each behavior in the population is 
directly reflected by the level of distribution 
entropy. Especially in the real value evolution 
algorithm similar to taxis evolution, the number 
of species of behavior samples determines the 
size of the attractive field of the population: 
when the sample type of the population is single, 
the distribution entropy 𝐻 → 0  the population 
diversity is the lowest, and the radius of the 
attractive field is the smallest. When the 
distribution probability of each sample in a 
population is similar, the distribution entropy 𝐻 
is the largest, the population diversity is the 
highest, and the radius of the attraction domain 
is the largest. In addition, the rate of change of 
population diversity can be characterized by the 
first derivative of distribution entropy 𝐻. 
 
The algorithm of TES-DF homing 
Based on TES navigation algorithm, in the homing 
search process, based on the value of 𝐻 , the 
corresponding evolution operator was used to 
regulate the population diversity, so as to achieve 
the purpose of inhibiting population drift and 
reducing search uncertainty. 
 
The homing algorithm based on TES-DF was 
designed as follows: 
(1) Step0 Initialization:  
Initializing the population 𝑃𝑜𝑝 0 , loading the 
geomagnetic environment 𝑩𝑇  of the target 
point, and obtaining the magnetic environment 
𝑩0  at the initial position through field 
measurement. 
 

𝐻 𝑃(𝑢1),𝑃(𝑢2),⋯ ,𝑃(𝑢𝑀) = −∑ 𝑃(𝑢𝑖) 𝑙𝑛 𝑃 (𝑢𝑖)
𝑀
𝑖=1                         
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(2) Step1 Terminate the decision:  
Calculating the multiple objective function 𝐹, if 
𝐹 < 𝜎, then terminating the homing. Otherwise, 
going to Step2. 
 
(3) Step2 Homing search:  
Selecting 𝑞𝑖  with randomly, and performing 
homing search, then mearsuring the current 

geomagnetic field parameter 𝑩𝑘. 
 
(4) Step3 Evaluate sample performance: 
Calculating the fitness function 𝐺 𝑘 , if 𝐺 𝑘 ≤

0, going to Step4. Otherwise, going to Step5. 

 
(5) Step4 Reproduction operator: 
Executive reproduction operator, going to step6. 
 
(6) Step5 Elimination operator: 
Executive elimination operator, go to Step6. 
 
(7) Step6 Mutation operator:  
Executive Mutation operator. 
 
(8) Step7 Threshold entropy 𝑯𝒕𝒉 determination: 
Calculating the population distribution entropy 
𝐻. And then, if 𝐻 ≥ 𝐻𝑡ℎ, executing in sequence. 
Otherwise, increasing the entropy of population 
distribution and going to Step1. 
 
(9) Step8 Distribution entropy H regulation:  
Going to Step1. 
 
The effectiveness of the bio-inspired homing 
algorithm 
The effectiveness of the bio-inspired homing 
algorithm based on TES-DF proposed in this 
paper was verified by utilizing the international 
geomagnetic model IGRF-13 to construct the 
homing background field and conducting 
simulation verification in MATLAB. Assuming that 
the carrier was a particle, the step size in unit 
time was L = 500 m, and the accuracy of the 
carried magnetic sensor was 0.1 nT and 0.1°. 

Other parameters were set as 𝐷𝜃 = 30°, 𝑁𝑝𝑜𝑝 =

50, 𝑁𝑠𝑝𝑟 = 1, and 𝑝𝑚𝑢𝑡 = 0.02.  

 
(1) Comparative analysis of homing effect 

The performance of different algorithms was 
compared between TES and TES-DF within 
MATLAB. With the same homing task as the 
background, the minimum threshold 
entropy  𝐻𝑡ℎ = 1.3 , population size  𝑁𝑝𝑜𝑝 = 50 , 

sampling interval 𝐷𝜃 = 30° , replication depth 
𝑁𝑠𝑝𝑟 = 4 , mutation probability  𝑃𝑚𝑢𝑡 = 0.01 

were set to conduct simulation experiments. In 
the homing route of TES algorithm, point "O" 
represented the carrier homing starting position, 
point "T" represented the homing target position 
(Figure 3).  
 
 

 
 
Figure 3. The homing route of TES algorithm. 

 
 
The magnetotaxis intensity change during the 
homing process was shown in Figure 4. The time 
period between the dashed boxes of ‘I’ and ‘II’ 
corresponded to the zigzag area ‘I’ and ‘II’ that 
appeared in the homing route in Figure 3. In 
combination with Figure 4, before entering ‘I’ and 
‘II’, the magnetotaxis intensity reached or even 
exceeded 45, at which time the population was 
already in the mature state. However, due to the 
change of the solution curve, the drift 
phenomenon appeared in the evolved 
population. In order to transition into a new 
mature state, the evolving population must 
intensify its exploration of the environment and 
reduce its magnetotaxis intensity in order to 
acquire a fresh optimal solution and regain 
maturity. This iterative search process visually 
demonstrated the convoluted nature of the 
homing path, with its complexity directly linked 
to the challenge of reattaining an optimal 
solution as search difficulty increasing, so did the 
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tortuosity of the homing path. It was evident that 
population drift-induced re-search not only 
prolonged unnecessary homing time but also 
heightened the risk of failed navigation searches 
due to difficulties in obtaining an optimal 
solution. Clearly, it was imperative to suppress 
population drift. It should be noted that multiple 
instances of population drift might occur during 
the homing process. However, these instances 
were minor and could be swiftly resolved as 
populations migrate towards a new mature state 
without reaching levels of path tortuousness 
seen in areas ‘I’ and ‘II’ depicted in Figure 3. 
 
 

 
 
Figure 4. Magnetotaxis intensity change in the homing process of 
TES algorithm. 

 
 
The homing route of TES-DF algorithm was 
depicted in Figure 5. In order to ensure successful 
homing, the motion path exhibited only a few 
minor deviations and twists. The magnetotaxis 
intensity change during the homing process of 
Figure 5 was illustrated in Figure 6. By setting a 

threshold entropy, the magnetotaxis intensity 𝜉𝛤  

was constrained to be within 45, with 𝜉𝛤 ranging 
between 25 and 40 for most of the time. During 
the zigzag part shown in Figure 5, the 

magnetotaxis intensity  𝜉𝛤  fell within the range 
of 15 and 30. In the process of TES-DF homing 
with DF suppression strategy, the radius r of 
population attraction domain was increased by 
setting a threshold entropy. This approach 
enabled the population to retain a wider range of 
sample types and reduced the complexity of 
discovering new optimal solutions. After the 

population drift appeared, the migration of 
population samples was made as internal 
migration as possible, which shortened the time-
consuming of population re-search, and then 
improved the efficiency of homing. In the overall 
homing movement, the number and degree of 
path tortuosity were significantly improved. 
 
 

 
Figure 5. The homing route of TES-DF algorithm. 

 
 

 
 
Figure 6. Magnetotaxis intensity change in the homing process of 
TES-DF algorithm. 

 
 
(2) Comparative analysis of homing time 
The single homing result was difficult to fully 
reflect the overall performance of the algorithm, 
so we conducted multiple homing experiments 
and used the statistics of homing time to analyze 
the performance of the algorithm. A certain 
position in space was randomly selected as the 
target point, and five starting points were set 
around the position to carry out the homing test, 
which was called task i (I = 1, 2, ⋯, 5). For five 
tasks, TES homing algorithm and TES-DF homing 
algorithm   were   used   respectively   to   conduct 
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Figure 7. Box plot of homing time. 

 
 
comparative analysis experiments. The results 
were shown in Table 1 and Figure 7, respectively. 
 
 
Table 1. Comparison of source finding time of different algorithms. 
 

Algorithm 
Source seeking task 

1 2 3 4 5 

TES 2.37 2.42 2.4 2.36 2.51 
TES-DF 2.00 2.03 2.05 2.01 1.93 

 
 
The statistical results in Table 1 were “actual time 
consumption/ideal time consumption”, where 
the actual time consumption referred to the 
statistical average of 1,000 simulation 
experiments, and the ideal time consumption 
referred to the homing time obtained by using 
the rolling window method along the gradient 
descent direction under the condition that the 
surrounding magnetic field distribution was 
known (note that the homing time consumption 
was only the ideal value because the surrounding 
geomagnetic field could not be predicted in 
advance). The results showed that, in the case of 
no prior geomagnetic data, the two algorithms 
could reach the target point with a time ratio less 
than 3, and both could get rid of the dependence 
of geomagnetic navigation on the prior database. 
Among them, the time ratio of TES was 
approximately 2.4, and the time ratio of TES-DF 
was about 2. From a statistical point of view, TES-
DF improved the homing time ratio by about 17% 
by suppressing the population drift. 

The homing time consumption of 1,000 instances 
was recorded in Figure7. From the perspective of 
homing time consumption, the median line and 
the position of the rectangular box in the TES-DF 
plot were lower than those in the TES plot. In 
other words, TES-DF algorithm could effectively 
reduce the homing time and improve the 
navigation search efficiency compared with TES 
algorithm. 
 
(3) Analysis of key parameters 
In TES-DF algorithm, the radius r of the absorbing 
state could be characterized by the threshold 
entropy Hth, and the two could be approximately 
regarded as a direct proportion relationship. The 
population migration speed could be 
characterized by the change speed of distribution 
entropy H, which was embodied in the increase 
of the distribution probability of the new optimal 
solution through the replication operation, and 
then the population migrated to the new mature 
state. The migration speed was determined by 
the reproduction depth Nspr. The effect of 
threshold entropy on homing search was 
investigated. According to the previous analysis, 
the setting of the threshold entropy Hth 
determined the size of the radius r of the 
attractive domain. Through digital simulation and 
analysis, the mechanism of the action of 
threshold entropy on population drift was further 
explored. Let the sampling interval Dθ = 30° and 
the population size Npop = 50, selecting multiple 

values of Hth ∈ (min(H)，max(H)), where min(H) 
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= 0 、 max(H) = 2.3. For each value, 1,000 

simulation experiments were carried out, and the 

homing time was counted. The statistical mean 𝑘̄ 
of homing search time consumption under 
different threshold entropy constraints is shown 
in the Figure 8. 
 
 

 
 
Figure 8. Effects of different threshold entropy Hth on the homing 
time consumption based on TES-DF. 

 
 

According to the distribution characteristics of  𝑘̄, 
its distribution could be divided into A, B, C three 
regions. In region A, the threshold entropy was 
set to 𝐻𝑡ℎ < 0.3. Due to the excessively small 
value of the threshold entropy in this specific 
region, it failed to effectively constrain and adjust 
the homing search process, resulting in negligible 
changes in homing time. In region B, the 
threshold entropy was set to 0.3 ≤ 𝐻𝑡ℎ < 1.2 . 
The threshold entropy imposed constraint on the 
reduction of population sample types, expanded 
the radius of attraction region, and thereby 
achieved the objective of inhibiting population 

drift and reducing 𝑘̄  value. In region C, the 
threshold entropy was set to 1.2 ≤ 𝐻𝑡ℎ < 2 . 
With the increase of threshold entropy, the 
radius of the mature state expanded 
continuously, although the diversity of the 
population was increased, the population was 
difficult to converge to the optimal solution, and 

the 𝑘̄  value was increased. In contrast, when 

𝐻𝑡ℎ ∈  1.0,  1.5 , the statistical value of 𝑘̄  was 

lower, and when 𝐻𝑡ℎ = 1.2, 𝑘̄ was taken to the 
minimum. 

The effect of replication depth 𝑁𝑠𝑝𝑟  on homing 

search behavior was then determined. The term 
“population migration” refers to the transfer of 
evolutionary populations between different 
states, and the velocity of migration has a certain 
impact on algorithm convergence. The search 
process based on the TES-DF homing algorithm 
was characterized by the rate of change of 
distribution entropy 𝐻, which signified the speed 
at which population migration occurred. This 
phenomenon was observed through an increase 
in the distribution probability of the new optimal 
solution via replication operation, resulting in a 
transition of the population towards a new 
mature state. The migration speed played a 
crucial role in facilitating the rapid transition of 
the population to the new mature state. 
However, it also posed the risk of local 
convergence. Conversely, a slow migration speed 
hampered timely tracking of the solution curve 
by the algorithm. Notably, the replication depth 
𝑁𝑠𝑝𝑟  determined the population's migration 

speed. By means of digital simulation, the 
homing effect of copy depth in the range of 
values was analyzed. The simulation parameter 
was set as 𝑁𝑠𝑝𝑟 ∈  1 ,  25 , and each point 

position was simulated for 1,000 times. The 
simulation results of the homing time were 
shown in Figure 9. The results of the average time 
spent in all three environments showed that the 
homing time decreased first and then increased 
with the increase in 𝑁𝑠𝑝𝑟  (Figure 9a). The time 

variance 𝐷 𝑘  demonstrated that the statistical 
results and trends of both ideal and noisy 
environments were highly similar with 𝐷 𝑘 <
0.5 × 106  (Figure 9b). In the local extreme 
environment, the time variance showed a large 
change. In the range of  𝑁𝑠𝑝𝑟 ≤ 5 , the time 

variance first increased and then decreased with 
the maximum value over 3.5 × 106 . In the 
𝑁𝑠𝑝𝑟 > 5  range, the time variance 𝐷 𝑘  was 

around 1 × 106 . If the 𝑁𝑠𝑝𝑟 ∈  1, 4  selection 

was too limited, the migration speed of the 
population slowed down, resulting in poor 
information transmission and increasing the time 
cost of source searching. With the increase in   
 𝑁𝑠𝑝𝑟 ∈  4, 8 , the speed of population migration 
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Figure 9. Influence of Nspr on homing. a. The average of homing time. b. The variance of homing time. 

 
 
was accelerated, enabling the timely tracking of 
the solution curve by the population. At this 
stage, satisfactory results were observed in terms 
of source search time and consistency. When 
𝑁𝑠𝑝𝑟 ∈  8, 25  continued to increase, rapid 

population migration resulted in search 
behaviors that were overly sensitive to 
environmental changes. Even minor alterations 
could significantly impact the population and 
prolong the time required to locate resources. 
The time spent on source searching was too long 
at this point, which in turn reduced the variance 
in time consumption. To enhance the efficiency 
of the source detection algorithm and integrate 
its performance across all three environments, it 
was recommended to opt for propagating 
operator 𝑁𝑠𝑝𝑟 ∈  4, 8 . 

 
 

Conclusion 
 
Aiming at the population drift problem of TES 
under the constraint of homing path, this study 
analyzed the action mechanism of each 
evolutionary operation on population drift, and 
then proposed a population diversity first (DF) 
drift suppression strategy from the perspective 
of expanding the attractive region. TES homing 
algorithm was improved, and a bio-inspired 
homing algorithm based on TES-DF was designed. 
By monitoring the population distribution 
entropy, the homing algorithm could improve the 
population diversity as much as possible without 
affecting the homing search efficiency and 
achieved the purpose of inhibiting the population 

drift. Theoretical analysis and simulation results 
showed that the improved navigation method 
could effectively improve the homing efficiency. 
The results showed that the TES-DF based bionic 
homing algorithm could effectively suppress the 
population drift phenomenon and improve the 
homing efficiency. It was an effective way to 
reduce the difficulty of population migration by 
appropriately expanding the radius of attraction 
region to make the population migration as 
internal as possible, which could inhibit 
population drift and improve the dynamic search 
ability of the algorithm. Replication depth could 
accelerate swarm migration, but too fast or too 
slow migration was not conducive to the 
improvement of homing performance. There are 
still some shortcomings in this study. The carrier 
was regarded as a particle, and its motion 
mechanics was not considered enough in this 
study, so it should be added later. In the follow-
up research, the magnetic field anomaly will also 
be reflected in the local extremum of the search 
space, and the effect of its strength, range, and 
polarity on homing behavior will be analyzed.  
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