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The current agricultural system grapples with complex challenges like climate change, resource constraints, and 
environmental pressure, while existing methods for evaluating agricultural ecological economic benefits are 
limited, relying on qualitative descriptions and simple quantitative analysis, lacking a systematic and dynamic 
evaluation mechanism, and struggling with complex nonlinear relationships and uncertainties. This study aimed 
to explore the effectiveness and practicality of an evaluation method based on fuzzy logic and neural network 
with the goal of providing a scientific and reasonable approach to guide sustainable agricultural development. 
The study integrated multiple data sources such as meteorological, soil, crop growth, and socioeconomic data, 
constructing a comprehensive evaluation model through fuzzy logic reasoning and neural network optimization. 
The model consisted of three main modules including an economic benefit evaluation module using methods like 
the Cobb - Douglas production function, an ecological benefit assessment module using ecological footprint and 
carbon emissions as indicators, and a social benefit assessment module using the social welfare model. The results 
demonstrated that the model performed well in economic, ecological, and social benefit evaluations with average 
scores of 78.5 ± 0.987 in economic benefit evaluation, 76.3 ± 1.034 in ecological benefit evaluation, and 80.1 ± 
0.965 in social benefit evaluation, and showed good adaptability and stability in different regions. This study 
offered a scientific basis and technical support for sustainable agricultural development, enabling policymakers, 
enterprises, and farmers to better understand and manage agricultural ecosystems, thereby promoting rational 
resource use and environmental protection. 
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 Introduction 
 
In the realm of global agriculture, the scientific 
field is currently witnessing a series of complex 
and far-reaching challenges. Climate change has 
led to a rise in the frequency and intensity of 
extreme weather events such as droughts, 
floods, and heatwaves. According to the Food 
and Agriculture Organization of the United 
Nations (FAO), approximately one third of the 
world's arable land has suffered varying degrees 

of degradation, severely threatening food 
security and exacerbating environmental 
problems. Resource constraints like soil 
degradation and water shortages are also 
becoming more acute [1, 2]. In addition, 
environmental pressures such as biodiversity loss 
are posing significant threats to the sustainable 
development of agriculture [3]. 
 
In terms of current knowledge and advances, 
agricultural ecological economic benefit 
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evaluation has emerged as a crucial area of 
research. In China, early studies mainly utilized 
traditional economic evaluation methods such as 
cost - benefit analysis and input - output analysis. 
However, with the deepening of research, 
scholars have proposed comprehensive 
evaluation frameworks, for example, an 
agricultural ecological benefit evaluation model 
based on ecological footprints, and a 
comprehensive ecological economic benefit 
evaluation system that incorporates resource 
consumption and pollution emissions. 
Internationally, especially in developed countries 
in Europe and the United States, there is a 
relatively mature theoretical system and 
methods. American agricultural economists have 
put forward evaluation methods based on 
ecological economics, while European scholars 
often use life - cycle analysis (LCA) to evaluate the 
environmental load and sustainability of 
agriculture. With the development of 
information technology, the application of fuzzy 
logic and neural networks in this field has 
become a research frontier [4]. Fuzzy logic can 
handle uncertainty and ambiguity, and more and 
more scholars are combining it with traditional 
evaluation methods to enhance the model's 
prediction accuracy and decision-making ability. 
Neural networks have also been used to build 
evaluation models, and some studies have 
combined the two to create multilevel 
comprehensive evaluation frameworks. Despite 
these advances, there are still pressing issues 
that need to be addressed. Traditional 
agricultural ecological economic benefit 
evaluation methods have numerous limitations. 
They often rely too much on expert experience, 
neglecting the importance of data driven and 
model optimization [5, 6]. These methods are 
mostly based on linear assumptions, while the 
actual agricultural ecological economic system is 
complex and nonlinear. Moreover, theses 
methods focus more on static analysis and lack 
the ability to adapt to the dynamic changes in the 
actual agricultural production ecological 
economic system. 
 

Considering these problems, the purpose of this 
research was to explore the effectiveness and 
practicality of an agricultural ecological economic 
benefit evaluation method based on fuzzy logic 
and neural network to provide a scientific and 
reasonable evaluation method that could guide 
the development of sustainable agriculture [7, 8]. 
The research integrated multiple data sources 
including meteorological data, soil data, crop 
growth data, and socioeconomic data to 
construct a comprehensive evaluation model 
through fuzzy logic reasoning and neural network 
optimization, which encompassed three main 
modules including an economic benefit 
evaluation module that used methods such as 
the Cobb - Douglas production function, an 
ecological benefit assessment module that 
employed ecological footprint and carbon 
emissions as indicators, and a social benefit 
assessment module that utilized the social 
welfare model [9, 10]. This research provided a 
scientific basis and technical support for the 
sustainable development of agriculture. By 
comprehensively evaluating the economic, 
ecological, and social benefits of the agricultural 
system, it could help policymakers, enterprises, 
and farmers better understand and manage 
agricultural ecosystems, which, in turn, 
promoted the rational use of resources and 
environmental protection and was essential for 
the long-term development of the agricultural 
field. 
 
 

Materials and methods 
 
Methodological framework 
This study constructed an evaluation framework 
that comprehensively considered agricultural 
economics, environmental impacts, and social 
benefits based on the multi-index evaluation 
theory. The core idea of this framework was to 
regard the agricultural ecosystem as a multi-
dimensional dynamic system, in which each 
dimension including economic, ecological, and 
social benefits needed to be evaluated through 
different quantitative indicators, and the 
correlation     and     uncertainty     between     the 
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Figure 1. Model framework. 

 
 
dimensions were handled through fuzzy logic 
methods [11]. The workflow of a fuzzy logic 
system included that the input data (such as 
Cobb-Douglas, EF, C_EM, and 
SocialWelfareModel) were first converted into 
fuzzy inputs that were processed by fuzzy 
inference rules and then defuzzied to generate 
the final output results (Figure 1). The entire 
system could be regarded as a neural network 
model, in which the fuzzy inference rules were 
equivalent to the multi-layer structure in the 
neural network that was used to realize complex 
nonlinear mapping relationships [12, 13]. 
Specifically, the evaluation framework consisted 
of three main modules. The economic benefit 
evaluation module focused on the economic 
benefits of agricultural production such as crop 
yield, resource utilization, and farmers’ income. 
Economic benefits were the basis for sustainable 
development of agricultural production, and 

their evaluation was achieved through the 
relationship between input and output. The 
input-output model of agricultural production 
such as the Cobb-Douglas production function 
was used to describe economic benefits [14, 15]. 
The ecological benefit evaluation module mainly 
measured the impact of agricultural activities on 
the environment such as water resource 
consumption, soil quality, and ecosystem service 
functions. The focus of ecological benefit 
evaluation was to reveal the interactive 
relationship between agricultural production and 
the ecological environment. Indicators such as 
ecological footprint and carbon emissions were 
employed to evaluate the environmental impact 
of agricultural activities. The social benefit 
evaluation module considered the impact of 
agricultural production on the social level such as 
rural economic development, employment 
opportunities, and farmers’ quality of life. Social 
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benefit evaluation not only focused on economic 
benefits but also attached importance to social 
equity and sustainable development.  

 
Method implementation 
To achieve a comprehensive evaluation of the 
ecological and economic benefits of agriculture, 
fuzzy logic with neural networks was combined 
and a multi-level and multi-dimensional 
evaluation method was designed. In the specific 
implementation process, the output of each 
evaluation module was synthesized through a 
fuzzy inference system to obtain the overall 
ecological and economic benefit evaluation 
value.  

 
(1) Economic benefit evaluation 
The core goal of the economic benefit evaluation 
module was to measure the relationship 
between input and output in agricultural 
production activities. The Cobb-Douglas 
production function was used to describe the 
input-output relationship of agricultural 
production as shown below [16]. 
 

Y A L K =             (1) 

 
where Y was agricultural output such as crop 
yield. A was total factor productivity (TFP). L and 
K were the input of labor and capital, 

respectively.  and   were the output elasticity 

coefficients of labor and capital, respectively. By 
fitting agricultural production data, the 
quantitative indicators of economic benefits 
were estimated. Considering that economic 
benefits not only depended on crop yields, but 
also involved farmers’ income and resource 
utilization efficiency, these factors were 

combined into a comprehensive indicator ecoE , 

as follows [17, 18]. 
 

1 2eco

R
E Y

C
 =  +            (2) 

 
where Y was crop yield and was calculated 
according to the Cobb-Douglas function. R was 
resource input such as water, fertilizer, etc. C was 

resource consumption such as agricultural cost. 

1 and 2 were weight coefficients, which 

respectively represented the contribution of 
yield and resource utilization efficiency to 
economic benefits. 

 
(2) Ecological benefit assessment 
The ecological benefit assessment module mainly 
measured the impact of agricultural activities on 
the ecological environment. The ecological 
footprint and carbon emissions were selected as 
key indicators for measuring ecological benefits. 
The calculation formula for ecological footprint 
(EF) was as follows [19]. 
 

1

n
i

i i

F
EF

Y=

=           (3) 

 

where iF was the consumption of the i-th 

resource such as water, land, energy, etc. iY  was 

the biological carrying capacity of the resource 
type, i.e. the sustainable utilization of the 
resource. n was the total number of resource 

types. Carbon emission emC was evaluated as 

follows. 
 

1

m

em i i

i

C E 
=

=            (4) 

 

where iE  was the energy consumption of the i-

th agricultural activity. i  was the emission 

factor of energy converted into carbon dioxide. 
m was the total number of agricultural activities. 
Through these indicators, the negative impact of 
agricultural activities on the environment could 
be calculated and converted into an ecological 

benefit score eco effE − . 

 
(3) Social benefit assessment 
Social benefit evaluation mainly considered the 
impact of agricultural production on rural 
economy, social stability, and farmers’ quality of 
life. The social welfare model was used to 
quantitatively evaluate social benefits as below. 



Journal of Biotech Research [ISSN: 1944-3285] 2025; 21:129-140 

 

133 

 

1

p

i i

i

W G
=

=            (5) 

 

where W was the total value of social welfare. iG

was the i-th social benefit indicator such as rural 

employment rate, farmers’ income level, etc. i

was the weight coefficient of the indicator. p was 
the number of social benefit indicators. By 
comprehensively considering the social and 
economic benefits, the social benefit score could 

be obtained as soc effE − . 

 
(4) Comprehensive evaluation and fuzzy 
reasoning 
After calculating the economic benefits, 
ecological benefits, and social benefits in the 
above three modules, fuzzy logic reasoning was 
used to comprehensively evaluate the results and 
obtain the final agricultural ecological economic 
benefit score. The basic process of fuzzy logic 
reasoning included fuzzy input, fuzzy reasoning, 
and defuzzification. Fuzzy input included 
mapping the evaluation results of each 
dimension (economic benefit, ecological benefit, 
and social benefit) to the fuzzy set through the 
membership function. For example, the 
economic benefit score could be fuzzified 
through the following membership function. 
 

1, if 80

80
( ) , if 60 80

20

0, if 60

ecoE

x

x
x x

x






−
=  




          (6) 

 
where x was the score of economic benefit. 

( )
ecoE x  was the degree of membership [20]. 

Fuzzy reasoning was performed through a series 
of fuzzy rules based on the relationship between 
the dimensions. For example, if the economic 
benefit and ecological benefit were both high and 
the social benefit was good, the overall benefit 
could be inferred as “high”. A set of simple fuzzy 
reasoning rules were set up as follows. 
 
IF  is high AND  is low THEN  is moderate.eco eco eff overallE E E−  

Defuzzification of the results of fuzzy reasoning 
was performed to obtain the final agricultural 
ecological and economic benefit score. Common 
defuzzification methods included weighted 
average method or maximum membership 
method. In this study, the weighted average 
method was used to integrate the results of fuzzy 
reasoning as below. 
 

1
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i i

i
overall n
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=


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
          (7) 

 
Neural network optimization 
To further improve the accuracy and stability of 
the evaluation model, this study introduced a 
neural network to optimize the agricultural 
ecological and economic benefit evaluation 
model. The neural network automatically learned 
the nonlinear relationship between the 
evaluation modules by training historical 
agricultural data, adjusting the weight of each 
module, and predicting future ecological and 
economic benefits. In this study, the input layer 
of the neural network consisted of the scores of 
each evaluation module such as economic 

benefit score ecoE , ecological benefit score 

eco effE − , social benefit score soc effE − , etc. The 

output layer of the neural network was the 

comprehensive evaluation result overallE , which 

was the final score of agricultural ecological 
economic benefits. To optimize the evaluation 
model, the neural network adopted a multi-layer 
perceptron (MLP) structure, which contained one 
or more hidden layers. The input layer of the 

neural network was set to 1 2[ , , , ]nx x x x=  , 

where ix was the i-th evaluation indicator such 

as crop yield, carbon emissions, etc. The output 
of the neural network was the comprehensive 
evaluation result y as shown below. 
 

( )( )2 1 1 2y f W W x b b=   + +           (8) 
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where 1

m nW  ¡  was the weight matrix from 

the input layer to the hidden layer. 
1

2

mW  ¡  

was the weight matrix from the hidden layer to 

the output layer. 1

mb  ¡ and 2b  ¡ were the 

bias terms of the hidden layer and output layer, 

respectively. ( )   was the activation function. 

( )f   was the activation function of the output 

layer. The optimization goal of the neural 
network was to minimize the loss function, so 
that the predicted comprehensive evaluation 
result y was close to the actual agricultural 
ecological economic benefit score. The 
commonly used loss function was the mean 
square error (MSE) and was shown in equation 
(9). 
 

( )
2

1

1
ˆ

N

i i

i

L y y
N =

= −           (9) 

 

where N was the number of samples. iy  was the 

true label of the i-th sample, i.e., the actual 
agricultural ecological and economic benefit 

score. ˆ
iy  was the comprehensive evaluation 

result predicted by the neural network. 
 

Experimental design 
The experimental data mainly came from 
multiple channels including public databases, 
field survey data, and relevant data provided by 
scientific research institutions. The data included 
historical meteorological data from the National 
Meteorological Administration such as 
temperature, precipitation, light intensity, etc., 
soil data from agricultural departments and 
scientific research institutions including soil type, 
organic matter content, pH value, etc., crop 
growth data such as crop types, growth cycles, 
yields, etc. from agricultural experimental 
stations and farmers, and socioeconomic data 
including labor costs, market prices, policy 
subsidies, etc. from the Statistics Bureau and 
government departments. The data covered 
dryland agricultural areas in northern China, 
paddy agricultural areas in the south, and mixed 
agricultural areas in the central region from 2010 

to 2020. The weather data obtained from the 
National Weather Service included 10,000 
samples. Soil data sourced from agricultural 
departments and scientific research institutions 
consisted of 8,000 samples. Crop growth data 
gathered from agricultural experiment stations 
and farmers comprised 12,000 samples. 
Additionally, socioeconomic data sourced from 
statistics bureaus and government departments 
included 9,000 samples. Together, these datasets 
provided a comprehensive overview of the 
environmental and socioeconomic factors 
impacting agriculture in the regions studied. To 
verify the effectiveness of the proposed method, 
several traditional agricultural ecological 
economic benefit evaluation methods were 
selected as controls, which included cost-benefit 
analysis (CBA), input-output analysis (IOA), 
ecological footprint (EF), life cycle analysis (LCA), 
and social welfare model (SWM). These methods 
provided different evaluation perspectives from 
economic benefits, ecological benefits, and social 
benefits. To comprehensively measure the 
performance of the proposed method, multiple 
evaluation indicators including mean square 
error (MSE), mean absolute error (MAE), 
coefficient of determination (R²), Pearson 
correlation coefficient (PCC), and accuracy for 
classification tasks were employed. These 
indicators together constituted a comprehensive 
evaluation system that helped to accurately 
evaluate the predictive ability and reliability of 
the model from multiple dimensions. 
 
 

Results and discussion 
 

The fuzzy logic-neural network model showed 
good adaptability in the evaluation of different 
regions. In the northern dryland agricultural area, 
the scores of economic benefit, ecological 
benefit, social benefit, and comprehensive 
evaluation were 79.0 ± 1.023, 75.2 ± 1.105, 81.0 
± 0.987, and 78.4 ± 1.054, respectively, while in 
the southern paddy field agricultural area, they 
were 77.5 ± 1.089, 76.8 ± 1.032, 80.5 ± 1.012, and 
78.1 ± 1.045, respectively. In the central mixed 
agricultural area, the scores of economic benefit, 
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Table 1. Evaluation results of different regions. 
 

 
Area 

Scores (± SD) 

Economic 
benefit 

Ecological 
benefit 

Social  
benefit 

Comprehensive 
assessment 

Northern dryland farming area 79.0 ± 1.023 75.2 ± 1.105 81.0 ± 0.987 78.4 ± 1.054 

Southern paddy field agricultural area 77.5 ± 1.089 76.8 ± 1.032 80.5 ± 1.012 78.1 ± 1.045 

Central mixed agricultural area 78.2 ± 1.121 75.9 ± 1.067 80.0 ± 1.098 78.0 ± 1.083 

 
 
Table 2. Comparison of different methods in economic benefit evaluation. 
 

 
Method 

Mean economic 
benefit score 

(± SD) 

Mean Squared 
Error 
(MSE) 

Mean 
Absolute Error 

 (MAE) 

Coefficient of 
determination  

(R²) 

Pearson correlation 
coefficient 

(PCC) 

Fuzzy logic-neural 
network model 

78.5 ± 0.987 0.012 0.085 0.92 0.95 

Cost-benefit 
analysis (CBA) 

75.2 ± 1.054 0.018 0.102 0.88 0.90 

Input-output 
analysis (IOA) 

74.8 ± 1.123 0.020 0.105 0.87 0.89 

 
 
Table 3. Comparison of different methods in ecological benefit assessment. 
 

 
Method 

Mean eco- 
benefit score 

(± SD) 

Mean Squared 
Error 
(MSE) 

Mean 
Absolute Error 

 (MAE) 

Coefficient of 
determination  

(R²) 

Pearson correlation 
coefficient 

(PCC) 

Fuzzy logic-neural 
network model 

76.3 ± 1.034 0.015 0.098 0.91 0.94 

Ecological footprint 
(EF) 

73.5 ± 1.156 0.022 0.110 0.86 0.88 

Life cycle analysis 
(LCA) 

72.9 ± 1.201 0.025 0.115 0.85 0.87 

 
 
ecological benefit, social benefit, and 
comprehensive evaluation were 78.2±1.121, 
75.9±1.067, 80.0 ± 1.098, and 78.0 ± 1.083, 
respectively (Table 1). Overall, the proposed 
method could provide stable and accurate 
assessment results in all regions, verifying its 
wide applicability and effectiveness. 
 
The fuzzy logic-neural network model showed 
high accuracy and stability in economic benefit 
evaluation with an average economic benefit 
score of 78.5 ± 0.987, a MSE of 0.012, a mean 
MAE of 0.085, a R² of 0.92, and a PCC of 0.95, all 
of which were better than traditional cost-
benefit analysis (CBA) and input-output analysis 

(IOA) (Table 2). The results showed that the 
proposed method could better capture the 
complexity of economic benefits and provide 
more accurate evaluation results. 
 
The fuzzy logic-neural network model also 
showed good performance in ecological benefit 
evaluation with an average ecological benefit 
score of 76.3 ± 1.034, a MSE of 0.015, a MAE of 
0.098, a R² of 0.91, and a PCC of 0.94, which was 
significantly better than the ecological footprint 
(EF) and life cycle analysis (LCA) methods (Table 
3). The results confirmed that the proposed 
model could more accurately reflect the impact 
of   agricultural   production   on   the   ecological 
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Table 4. Comparison of different methods in social benefit evaluation. 
 

 
Method 

Mean social 
benefit score 

(± SD) 

Mean Squared 
Error 
(MSE) 

Mean 
Absolute Error 

 (MAE) 

Coefficient of 
determination  

(R²) 

Pearson correlation 
coefficient 

(PCC) 

Fuzzy logic-neural 
network model 

80.1 ± 0.965 0.010 0.075 0.93 0.96 

Social welfare 
model (SWM) 

77.8 ± 1.098 0.016 0.092 0.90 0.92 

 
 

 
 
Figure 2. Hyperparameter analysis. 

 
 
environment and provide a more comprehensive 
ecological benefit evaluation. 
 
The fuzzy logic-neural network model performed 
outstandingly in the social benefit evaluation 
with an average social benefit score of 80.1 ± 
0.965, a MSE of 0.010, a MAE of 0.075, a R² of 
0.93, and a PCC of 0.96, all of which were 
significantly better than the traditional social 
welfare model (SWM) (Table 4). The result 
indicated that the proposed model had a strong 
advantage in evaluating agricultural benefits at 
the social level such as farmers’ quality of life, 
social welfare, etc. 

Under certain specific combinations of 
regularization strength and learning rate, the 
model could achieve higher accuracy, while, in 
other cases, it might lead to poor performance 
(Figure 2). In addition, there were some local 
optimal solution areas, in which relatively stable 
high-precision output could be obtained when 
these two parameters were adjusted within a 
certain range. 
 
The comprehensive evaluation results showed 
that the fuzzy logic-neural network model was 
still leading in the comprehensive evaluation with 
a comprehensive evaluation score of 78.3 ± 
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Table 5. Comparison of different methods in comprehensive evaluation. 
 

 
Method 

Comprehensive 
assessment score 

(± SD) 

Mean Squared 
Error 
(MSE) 

Mean Absolute 
Error 

 (MAE) 

Coefficient of 
determination  

(R²) 

Pearson correlation 
coefficient 

(PCC) 

Fuzzy logic-neural 
network model 

78.3 ± 0.998 0.012 0.085 0.92 0.95 

Traditional method 
combination 

75.5 ± 1.076 0.018 0.102 0.88 0.90 

 
 

 
 
Figure 3. Method performance and comprehensive score. 

 
 
0.998, a MSE of 0.012, a MAE of 0.085, a R² of 
0.92, and a PCC of 0.95. Compared with the score 
of 75.5 ± 1.076 in traditional method 
combination, the fuzzy logic-neural network (FL-
NN) model showed higher accuracy and stability 
in all evaluation indicators, proving that the 
model had significant advantages in the 
comprehensive evaluation of agricultural 
ecological and economic benefits (Table 5). The 
results demonstrated that, as the evaluation 
score increased, the comprehensive score also 
increased, showing an obvious positive 
correlation, which meant that, no matter which 
method, the higher the evaluation score, the 
higher the corresponding comprehensive score. 
However, at the same level of evaluation score, 
the FL-NN method usually produced better 
comprehensive score results than that of the 

traditional method (Figure 3). For example, at an 
evaluation score of about 76 points, the 
comprehensive score of the FL-NN method was 
about 78 points, while the traditional method 
was only about 76 points. Therefore, it could be 
inferred that the FL-NN method was superior to 
the traditional approach in most cases. 
 
The relationship between the evaluation score 
and the comprehensive score of the traditional 
method and the FL-NN method showed that 
there was a certain correlation between the 
evaluation score and the comprehensive score of 
both methods (Figure 4). Specifically, when the 
evaluation score was high, the corresponding 
method could often achieve a good 
comprehensive score and vice versa. The results 
suggested that the evaluation score could indeed 
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Figure 4. The relationship between evaluation scores and comprehensive scores of traditional method and FL-NN method. 

 
 

 
 
Figure 5. PCC and accuracy change with learning rate. 

 
 
reflect the overall quality of a method. 
 
The PCC and accuracy of the model as the 
learning rate changes showed that, as the 
learning rate increased, both PCC and accuracy 
demonstrated a trend of first rising and then 

falling. Specifically, when the learning rate was 
around 0.02, PCC reached a peak of about 0.92, 
while accuracy also reached a maximum value at 
the same position, close to 0.90. After that, as the 
learning rate continued to increase, the values of 
both began to decline, especially after the 
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learning rate reached 0.06, the decline rate was 
significantly accelerated (Figure 5). It was worth 
noting that, although PCC and accuracy 
maintained a high degree of consistency 
throughout the process, their specific trends 
were not completely consistent. For example, 
when the learning rate was 0.04, PCC dropped 
sharply, while accuracy was relatively stable. On 
the contrary, when the learning rate was 0.08, 
accuracy decreased rapidly, while PCC remained 
at a high level. 
 
 

Discussion 
 

Through this study, a complex relationship 
between model performance with PCC and 
accuracy as the main evaluation indicators and 
learning rate was observed. As one of the key 
factors affecting the model training process, the 
choice of learning rate was crucial to the final 
performance of the model. The results indicated 
that, within a certain range, an appropriate 
learning rate could effectively promote the 
learning ability of the model, so that both PCC 
and accuracy could reach a high level. However, 
when the learning rate exceeded a certain 
threshold, an excessively high learning rate 
would lead to unstable model training, resulting 
in a significant decrease in performance, which 
suggested that, in practical applications, finding 
the optimal or suitable learning rate was an 
important task, and experiments might be 
needed to determine the best value. In addition, 
although PCC and accuracy showed similar trends 
in most cases, there were certain differences 
between the two in certain specific learning rate 
ranges, which might imply that the goal of model 
optimization should be emphasized in different 
business scenarios. For example, when 
emphasizing the accuracy of predicting 
continuous variables, PCC might be more 
important, while accuracy should be considered 
more when focusing on the correctness of 
classification tasks. Therefore, in the process of 
model development, understanding and 
weighing the relationship between these 

indicators was important for achieving better 
model performance. 
This study aimed to address the complex 
challenges of the current agricultural system 
including climate change, resource constraints, 
and environmental pressures by constructing an 
agricultural ecological economic benefit 
evaluation model based on fuzzy logic and neural 
networks. The research background stemmed 
from the inadequacy of existing evaluation 
methods and the need for scientific and 
reasonable evaluation methods. To this end, 
multiple data sources including meteorological 
data, soil data, crop growth data, and 
socioeconomic data were integrated to construct 
a comprehensive evaluation model. Through 
fuzzy logic reasoning and neural network 
optimization, the model could comprehensively 
evaluate the economic, ecological, and social 
benefits of the agricultural system. A variety of 
evaluation indicators including MSE, MAE, R², 
and PCC were used to verify the accuracy and 
stability of the model. The results confirmed that 
the model performed well in all aspects of 
evaluation and was significantly better than 
traditional methods. In addition, evaluations in 
different regions including the northern dryland 
agricultural area, the southern paddy agricultural 
area, and the central mixed agricultural area 
were also conducted. The results showed that 
the model also showed good adaptability and 
stability in applications in different regions, 
which further verified the wide applicability of 
the model. This study provided a scientific basis 
and technical support for the sustainable 
development of agriculture. By comprehensively 
evaluating the economic, ecological, and social 
benefits of the agricultural system, the model 
could help policymakers, enterprises, and 
farmers better understand and manage 
agricultural ecosystems, promote the rational 
use of resources and environmental protection. 
Future research would further optimize the 
model, improve its stability and reliability in 
practical applications, and contribute to the 
realization of sustainable development of 
agriculture. 
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