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Ubiquitin-specific peptidase 2 (USP2) is a crucial deubiquitylating enzyme (DUB) belonging to the peptidase C19 
superfamily. Despite emerging evidence of DUBs' involvement in tumor progression, USP2's pan-cancer 
expression patterns and its mechanistic contributions to kidney renal clear cell carcinoma (KIRC) pathogenesis 
remain unexplored. This study investigated pan-cancer expression profiling through integrated analysis of TCGA, 
GTEx, and CCLE datasets. DNA methylation patterns in KIRC were characterized using MethSurv platform. Immune 

microenvironment interactions were decoded through multi-algorithmic approaches (CIBERSORT, EPIC, TIMER). 
Single-cell resolution mapping was performed via TISCH2. Identify characteristic genes in KIRC using machine 
learning. Functional networks were constructed using STRING with GSEA validation. The results showed that USP2 

demonstrated significant differential expression in KIRC compared to normal renal tissues with its downregulation 
exhibiting strong prognostic relevance to advanced tumor staging (T3 - T4) and diminished survival outcomes. 
Mechanistically, USP2 appeared to exert tumor-suppressive functions through immune microenvironment 
modulation as evidenced by its correlation with antitumor immune signatures and checkpoint regulators. The 
consistent association between USP2 hypermethylation at promoter CpG sites and transcriptional silencing 
suggested epigenetic regulation of this pathway. These results positioned USP2 as a promising 
immunotherapeutic biomarker candidate in KIRC, warranting further validation through prospective clinical 

cohorts and functional mechanistic investigations. 
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Introduction 
 
Renal cell carcinoma (RCC), a highly aggressive 
malignancy of the urinary system, accounts for 2 
- 3% of adult cancers and ranks third in urologic 
malignancies after prostate and bladder cancers 
[1, 2]. Clear cell RCC (ccRCC), representing 75 -
80% of RCC cases, demonstrates pronounced 

tumor heterogeneity, frequent metastasis, and 
dismal prognosis with a 5-year survival rate 
below 10% for advanced-stage patients [3-5]. 
Current therapeutic strategies including targeted 
therapies and immunotherapies yield limited 
clinical benefits due to intrinsic resistance 
mechanisms [6]. 
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The ubiquitin-proteasome system (UPS), a critical 
post-translational regulatory axis, governs 
protein homeostasis through balanced 
ubiquitination and deubiquitination [7, 8]. 
Dysregulation of UPS components drives 
carcinogenesis by stabilizing oncoproteins such 
as NF-κB or degrading tumor suppressors like p53 
[9-11]. Ubiquitin-specific protease 2 (USP2), a 
member of the deubiquitinating enzyme family, 
modulates key cancer pathways by regulating 
protein stability [12]. Emerging evidence 
highlights its dual roles in tumorigenesis, which 
includes that USP2 stabilizes TRAF2 to enhance 
inflammatory signaling [13], while paradoxically 
promotes PD-L1 degradation to impair antitumor 
immunity [14]. Mechanistically, USP2 
orchestrates immune regulation via the VPRBP-
p53 axis [11] and facilitates tissue repair in 
inflammatory diseases [15]. Despite these 
advances, critical knowledge gaps persist. First, 
USP2's pan-cancer expression patterns remain 
unmapped, limiting the understanding of its 
tissue-specific oncogenic effects. Second, in 
ccRCC context, USP2's functional crosstalk with 
epigenetic regulators and tumor 
microenvironment components is completely 
unexplored. Third, existing studies 
predominantly focus on gastrointestinal and 
pulmonary malignancies [16, 17], leaving renal 
cancer biology conspicuously underinvestigated. 
 
This study systematically investigated USP2's 
oncogenic roles through two complementary 
approaches of pan-cancer analysis of USP2 
expression, epigenetic regulation, and prognostic 
significance across 34 malignancies and 
dissection of USP2-mediated immune 
modulation in ccRCC using TCGA/GEO cohorts 
and single-cell transcriptomics. The bulk RNA-seq 
(TCGA, GTEx), DNA methylation arrays 
(MethSurv), and immune infiltration algorithms 
(CIBERSORT, TIMER) were integrated to map 
USP2's molecular landscape. Functional 
enrichment analysis (GSEA) and protein 
interaction networks (STRING) were employed to 
elucidate pathway associations, while scRNA-seq 
(TISCH2) resolved cell-type-specific expression 
patterns. By establishing USP2 as a novel 

immunomodulatory hub in ccRCC, this work 
provided a rationale for targeting USP2-mediated 
deubiquitination to overcome therapy 
resistance. The identified crosstalk between 
USP2 and PD-L1 pathways would offer actionable 
insights for developing combination 
immunotherapies. 
 
 

Materials and methods 
 
Data mining and processing 
The standardized pan-cancer datasets including 
The Cancer Genome Atlas (TCGA), 
Therapeutically Applicable Research to Generate 
Effective Treatments (TARGET), and Genotype-
Tissue Expression (GTEx), collectively 
abbreviated as PANCAN, were obtained from the 
UCSC Xena database (https://xenabrowser.net/). 
A total of 19,131 biological samples (N) of tumors 
specimen, normal tissues, or blood samples were 
included in the standardized pan-cancer dataset, 
while 60,499 genes or transcriptomic features (N) 
annotated by identifiers such as Ensembl IDs 
were measured across all samples. Expression 
data of USP2 (Ensemble ID. ENSG00000036672) 
were extracted from all samples with subsequent 
selection of specimen types including solid tissue 
normal, primary solid tumor, primary tumor, 
normal tissue, primary blood derived cancer - 
bone marrow, and primary blood derived cancer 
- peripheral blood. The term "each sample" 
referred to all individual biological specimens 
retained after stringent filtering of the original 
TCGA, TARGET, GTEx datasets. All expression 
values underwent log2(x + 0.1) transformation 
followed by exclusion of cancer types containing 
fewer than three samples per category, yielding 
expression profiles for 34 distinct cancer types. 
Gene expression profiles from the Gene 
Expression Omnibus (GEO) 
(http://www.ncbi.nlm.nih.govgeo/) datasets 
(GSE781 and GSE53000, total n = 113) meeting 
the inclusion criterion (> 20 samples per dataset) 
were acquired. Batch effect correction was 
performed using the R 'sva' package with RNA-
seq data processing executed through the 
'limma' package. Machine learning algorithms 
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(LASSO and SVM) were employed for feature 
gene selection accompanied by construction of a 
protein-protein interaction network. 
 
USP2 analysis of available cell lines in the Cancer 
Cell Line Encyclopedia (CCLE) database 
Multi-omics data encompassing RNA-seq data, 
DNA methylation profiles, somatic mutation 
records, and copy number variation (CNV) data 
from human cancer cell lines were retrieved from 
Cancer Cell Line Encyclopedia (CCLE) database 
(https://portals.broadinstitute.org/CCLE). USP2 
expression levels across distinct tissue types and 
malignant cell lineages were comparatively 
analyzed. Data visualization was executed using 
the ggplot2 package in R. 
 
Analysis of genetic variation 
Pan-cancer analysis of USP2 gene alterations was 
conducted through the cBioPortal platform 
(https://www.cbioportal.org). Tumor samples 
derived from TCGA database were analyzed, 
revealing inter-tumor variability in genetic 
alteration profiles across three parameters of 
alteration frequency, mutation type distribution, 
and copy number alteration (CNA) patterns. 
 
USP2 DNA methylation analysis 
USP2 methylation datasets were obtained 
simultaneously during pan-cancer USP2 
transcriptome expression data acquisition from 
TCGA dataset. The data types included clinical 
data and corresponding TCGA dataset, RNA-seq 
data, and Methylation450K data. The 
methylation chips were annotated and a pan-
cancer methylation analysis of USP2 was carried 
out. Furthermore, the Shiny Methylation Analysis 
Resource Tool (SMART) application 
(http://www.bioinfo-zs.com/smartapp/) and the 
MethSurv (https://biit.cs.ut.ee/methsurv/) 
databases were utilized to investigate the 
relationship between USP2 DNA methylation 
levels and gene expression, as well as the 
correlation between gene methylation degree 
and overall survival (OS) prognosis in kidney renal 
clear cell carcinoma (KIRC) patients. 
 
Subsistence analysis 

Analysis of USP2 expression trends across 34 
cancer types identified malignancies 
demonstrating significant differential expression 
between tumor and adjacent normal tissues. 
RNA-seq data generated through the STAR 
alignment pipeline were standardized with 
subsequent extraction of TPM-formatted 
expression matrices and clinical annotations. 
Specimens lacking matched clinical metadata or 
representing normal tissue controls were 
excluded. Cox proportional hazards regression 
analysis was implemented using the survival 
package (v3.3-1) to assess prognostic 
associations [18]. 
 
Analysis of co-expressed genes and 
differentially expressed genes 
Co-expression analysis of USP2 in KIRC was 
performed using the LinkedOmics database 
(http://www.linkedomics.org/login.php) with 
TCGA RNA-seq data. Pearson correlation 
coefficients were calculated through the 
platform's analytical module with co-expressed 
genes visualized in volcano plot format. The 
TCGA-KIRC cohort was stratified into USP2-low 
and USP2-high subgroups based on median 
expression thresholds. Differential expression 
analysis between subgroups was conducted 
using the limma package (v3.54.2, R4.2.1) with 
significantly differentially expressed genes 
(DEGs) identified at false discovery rate < 5%. 
Intersection analysis of DEGs and co-expressed 
genes was subsequently performed with results 
visualized through ggplot2 (v3.4.2) and 
VennDiagram (v1.7.3) packages. 
 
Functional enrichment analysis 
Functional enrichment analysis was 
implemented using the clusterProfiler package 
(R4.2.1) with z-score calculation for each 
enriched term performed through the GOplot 
package. Gene Ontology (GO) 
(http://geneontology.org/) annotation, Kyoto 
Encyclopedia of Genes and Genomes (KEGG) 
(https://www.genome.jp/kegg/) pathway 
analysis, and tissue-specific enrichment 
evaluation were systematically conducted on the 
identified intersecting gene set. Visualization of 
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analytical results was achieved using ggplot2 
graphical parameters. 
 
Gene set enrichment analysis 
Gene Set Enrichment Analysis (GSEA) was 
performed using GSEA v4.1.0 
(http://www.broadinstitute.org/gsea) on the 
intersecting gene set. The 
"c2.cp.v2022.1.Hs.gmt" gene set collection from 
MSigDB (https://www.gsea-
msigdb.org/gsea/msigdb/collections.jsp) served 
as the reference database. Significant pathway 
enrichment was defined by the following 
thresholds as nominal P value < 0.05, false 
discovery rate (FDR) < 0.25, adjusted P value < 
0.05, and normalized enrichment score (NES) 
absolute value > 2 [19]. 
 
Construction and visualization of the Protein-
Protein Interaction network 
Protein-protein interaction (PPI) network 
analysis was conducted using the STRING 
database (https://string-db.org/) with 357 
intersecting genes. The Cytoscape platform 
(v3.9.1) was employed for network visualization 
with the MCODE plugin (v2.0.2) implementing 
cluster detection under defined parameters 
(node degree ≥ 2, k-core ≥ 5) to identify hub 
genes [20-22]. Machine learning algorithms (SVM 
and LASSO) were applied to process GSE781 and 
GSE53000 expression matrices from GEO 
(https://www.ncbi.nlm.nih.gov/geo/), enabling 
identification of disease-associated signature 
genes. A composite PPI network integrating USP2 
with these characteristic genes was subsequently 
constructed. 
 
Immune-related analysis 
After downloaded and organized the pan-cancer 
dataset, the correlation between USP2 
(ENSG00000036672) and the marker genes of 
five immune pathways as well as 60 dual-type 
immune checkpoint pathway genes were 
calculated [23, 24].  
 
Immune infiltration analysis 
Gene expression profiles across tumor types 
were extracted from the pan-cancer dataset and 

annotated with standardized GeneSymbol 
identifiers. Tumor-specific immune scores were 
calculated using the ESTIMATE package (v1.0.13) 
in R, enabling quantitative evaluation of tumor 
microenvironment characteristics [25]. Immune 
infiltration-USP2 correlations were 
systematically assessed through the psych 
package (v2.1.6) with pan-cancer relevance 
quantified by Pearson coefficients. Seven 
computational algorithms including TIMER, EPIC, 
IPS, MCPcounter, xCELL, CIBERSORT, QUANTISEQ 
were implemented to evaluate USP2-associated 
immune cell infiltration patterns. Correlation 
analysis encompassed both lymphoid and 
myeloid lineage populations across all TCGA 
tumor cohorts. 
 
Single-cell sequencing 
The CancerSEA database 
(http://biocc.hrbmu.edu.cn/CancerSEA/) was 
used to analyze the correlation of USP2 with the 
biological behavior of tumor cells in different 
tumors. Single cell datasets were obtained by 
using the TISCH2 tool (http://tisch.comp-
genomics.org/home/) for cell type annotation, 
differential gene analysis and visualization. 
 
Statistical analysis 
SPSS 27.0 (IBM, Armonk, NY, USA) was employed 
with Python 3.9 supporting auxiliary data 
preprocessing through SciPy 1.7.1 for 
normality/variance checks of this research. For 
numerical variables between two-group 
comparison, Student's t-test for normal 
distribution with equal variance, Welch's t-test 
for normal distribution with unequal variance, or 
Wilcoxon rank-sum test for non-normal 
distribution were employed. Three-group and 
multi-group comparisons utilized one-way 
ANOVA for normal distribution with equal 
variance, Welch's ANOVA for normal distribution 
with unequal variance, or Kruskal-Wallis test for 
non-normal distribution, followed by post-hoc 
analyses of Tukey HSD for ANOVA, Dunn-
Bonferroni test for Kruskal-Wallis when 
significant differences emerged as P less than 
0.05. Categorical variables were analyzed using 
Pearson  χ²  (expected   frequencies  >  5),  Yates' 
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Figure 1. Specific expression map of USP2 in pan-cancer tissues. (A) The differential expression of usp2 in cancer tissues and normal tissues in TCGA 
and GTEx databases (***P < 0.001, **P < 0.01, *P < 0.05). (B) The expression of USP2 in 33 tissues in the CCLE database. (C) Correlation between 
expression of USP2 and copy number variation in the CCLE database. 

 
 
corrected χ² (expected frequencies 1 - 5), or 
Fisher's exact test (expected frequencies < 1 or 
sample size < 40). P values less than 0.05, 0.01, 
and 0.001 were defined as statistically significant, 
very significant, and extremely significant 
differences.  
 
 

Results and discussion 
 

Tissue-specific expression of USP2 in a pan-
cancer dataset 
The expression levels of USP2 between tumor 
and normal tissues in 34 types of cancer in the 
TCGA and GTEx datasets were compared (Figure 

1). The results showed that USP2 was expressed 
in all cancers, which suggested that USP2 could 
potentially be a tumor suppressor gene. The 
expression level of USP2 was the highest in 
normal tissues of kidney chromophobe (KICH), 
kidney renal papillary cell carcinoma (KIRP), and 
kidney renal clear cell carcinoma (KIRC) with the 
expression levels in normal tissues significantly 
higher than that in tumor tissues (P < 0.001). The 
expression of USP2 was also at a relatively high 
level in glioblastoma multiforme (GBM) and 
mesothelioma (MESO), while the lowest trend of 
which was in bladder urothelial carcinoma (BLCA) 
and acute myeloid leukemia (LAML). Except for 
adrenocortical     carcinoma     (ACC),     lymphoid 
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Figure 2. Genetic variations of USP2 based on the cBioPortalWeb database.  

 
 
neoplasm diffuse large B-cell lymphoma (DLBC), 
LAML, brain lower grade glioma (LGG), 
mesothelioma (MESO), ovarian serous 
cystadenocarcinoma (OV), skin cutaneous 
melanoma (SKCM), testicular germ cell tumors 
(TGCT), uterine carcinosarcoma (UCS), and uveal 
melanoma (UVM), whose data were unavailable 
or too limited, there were significant differences 
in the expression of USP2 between tumor tissues 
and normal tissues in the remaining 18 cancers, 
and the expression of USP2 in tumor tissues was 
lower than that in normal tissues. USP2 was 
found in BLCA, KICH, KIRC, KIRP, breast invasive 
carcinoma (BRCA), colon adenocarcinoma 
(COAD), head and neck squamous cell carcinoma 
(HNSC), lung adenocarcinoma (LUAD), lung 
squamous cell carcinoma (LUSC), prostate 
adenocarcinoma (PRAD), rectum 
adenocarcinoma (READ), stomach 
adenocarcinoma (STAD), thyroid carcinoma 
(THCA), uterine corpus endometrial carcinoma 
(UCEC) with extremely significantly lower 
expression in tumor tissues than that in normal 
tissues (P < 0.001). The expression of USP2 in 
tumor tissues in GBM, pheochromocytoma, and 

paraganglioma (PCPG) was significantly lower 
than that in normal tissues (P < 0.01). The 
expression trend in cervical endocervical 
adenocarcinoma and squamous cell carcinoma 
(CESC), and cholangiocarcinoma (CHOL) also 
showed the same difference (P < 0.05). Besides, 
USP2 mRNA expression levels were not 
significantly different between tumor tissues and 
corresponding normal tissues in liver 
hepatocellular carcinoma (LIHC), pancreatic 
adenocarcinoma (PAAD), sarcoma (SARC), 
esophageal carcinoma (ESCA), thymoma (THYM) 
(Figure 1A). 
 
Epigenetic alterations of USP2 in pan-cancer 
The genetic alterations in the USP2 gene in 
different types of tumors in the TCGA dataset 
were studied on cBioPortalWeb. The results 
showed that USP2 gene mutation frequency was 
the highest (7.43%) in SKCM. Among all kidney 
cancers, “amplification” of the USP2 was the 
major alteration in KICH. In KIRC, “deep 
deletions”, “amplifications”, and “mutations” of 
the USP2 gene had been found, but mutations 
were   the   predominant   type  (Figure  2).   USP2 
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Figure 3. USP2 methylation levels based on TCGA data samples. (A) Heatmap of USP2 methylation site expression in the TCGA pan-cancer dataset. 
(B) The USP2 DNA methylation status of KIRC patients in the SMART App and MethSurv database.  

 
 
methylation expression data obtained from the 
TCGA pan-cancer dataset were compared for 
differential analysis of methylation sites, and 
methylation probe sites were annotated and 
visualized (Figure 3). For probes in the USP2 gene 
promoter region (cg08070028, cg09048129, 
cg13442428, cg18262852, cg20822818, 
cg25422351, cg03883256, cg13123851, 
cg25821437), DNA methylation level (β value) 

was negatively correlated with USP2 expression 
level, while cg16356224 had the opposite trend. 
The probes for non-coding region of USP2 gene 
(cg10353108, cg10904972, cg27092752, 
cg08294986) demonstrated positively correlated 
with the expression level of USP2. The 
methylation of the probe (cg08533336, 
cg25538627, cg02854536) in the gene body 
region  of  USP2  showed  a  positive  correlation 
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Figure 4. The prognostic value of USP2 expression for overall survival (OS) across different tumor types. (A) ACC. (B) GBMLGG. (C) KIRC. (D) PAAD. 
(E) OV. 

 
 
with USP2 gene expression, while other probes 
(cg12714007, cg12716639, cg24258886) showed 
a negative correlation with USP2 gene expression 
(Figure 3B). The high methylation levels at the 
cg13442428, cg25422351, and cg03883256 sites 
in the promoter region of the USP2 gene were 
associated with a good prognosis (P < 0.05), while 
high methylation at the cg10353108, 
cg10904972, cg08533336, cg25538627, 
cg02854536, cg12714007, and cg12716639 sites 
in the non-coding region of the USP2 gene was 
associated with a poor prognosis (P < 0.05). 
 
Prognostic value of USP2 expression in tumor 
tissues 
The proportional hazards assumption test and 
fitted survival regression were performed using 
the “survival” package with results visualized 
using the “survminer” package and “ggplot2”. 
The RNAseq data from the TCGA-KIRC project's 
STAR process were downloaded and organized 
from the TCGA database 
(https://portal.gdc.cancer.gov) in TPM format as 
well as the clinical data. Based on USP2 

expression levels in different tumors, the 
relationship between USP2 expression and the 
prognosis of cancer patients was studied. The 
results showed that USP2 expression was 
significantly associated with overall survival (OS) 
in patients with five cancer types (Figure 4). High 
expression of USP2 was associated with good 
prognosis and OS in patients with ACC, GBMLGG, 
PAAD, and KIRC. Conversely, it was associated 
with poor prognosis and OS in patients with OV. 
The results suggested that the level of USP2 
expression was highly correlated with disease 
prognosis in cancer research. 
 
USP2 is an independent prognostic factor for 
patients with KIRC 
The analysis found that KIRC patients with high 
USP2 expressions had significantly better OS than 
those with low expressions. Furthermore, the 
Cox model confirmed that USP2 had the potential 
to be a prognostic factor for patients with KIRC. 
The univariate Cox regression analysis showed 
that USP2 expression (low vs. high, HR = 0.611, 
95% CI:  0.449 - 0.831,  P = 0.002),  T stage (T1 vs. 

https://portal.gdc.cancer.gov/
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Figure 5. High expression of USP2 was an independent prognostic factor for patients with KIRC. (A) Forest plot of univariate Cox regression analysis 
of USP2 mRNA expression and OS in KIRC with different clinical pathological features. (B) Forest plot of multivariate Cox regression analysis of USP2 
mRNA expression and OS in KIRC with different clinical pathological features. 

 
 
Table 1. Clinical and genetic characteristics of KIRC patients in the TCGA cohort.  
 

Characteristics Low expression of USP2 High expression of USP2 P value 

Number  270 271  
Age  ≤ 60 140 (25.9%) 129 (23.8%) 0.322846301 

 > 60 130 (24%) 142 (26.2%)  

Gender Female 74 (13.7%) 113 (20.9%) < 0.001 
 Male 196 (36.29%) 158 (29.2%)  

 Asian 3 (0.6%) 5 (0.9%)  
Race African American 19 (3.6%) 38 (7.1%) 0.022419234 

 White 244 (45.7%) 225 (42.1%)  

 T1 121 (22.4%) 158 (29.2%)  
Pathologic T stage T2 43 (7.9%) 28 (5.2%) 0.005563901 

 T3 and T4 106 (19.6%) 85 (15.7%)  

 Stage I 118 (21.9%) 155 (28.8%)  
Pathological stage Stage II 35 (6.5%) 24 (4.5%) 0.005664558 

 Stage III and Stage IV 116 (21.6%) 90 (16.7%)  
 G1 3 (0.6%) 11 (2.1%)  

Histological grade G2 110 (20.6%) 126 (23.6%) 0.007289236 
 G3 104 (19.5%) 103 (19.3%)  
 G4 49 (9.2%) 27 (5.1%)  

 
 
T3 & T4, HR = 3.555, 95% CI: 2.536 - 4.982, P ≤ 
0.001), pathological stage (stage I vs. stage III & 
stage IV, HR = 4.050, 95% CI: 2.870 - 5.715, P ≤  
0.001), and Age (≤ 60 vs. > 60, HR = 1.791, 95% CI: 
1.319 - 2.432, P ≤ 0.001) were related to OS 
(Figure 5A). The multivariate Cox regression 
analysis showed that USP2 expression (HR = 
0.621, 95% CI: 0.454 – 0.851, P = 0.003) was an 
independent prognostic factor for OS in KIRC 
(Figure 5B). 

Expression of USP2 mRNA and clinical features 
in KIRC 
The clinical and genetic features of KIRC patients 
in the TCGA cohort were summarized in Table 1. 
The patients were grouped by the high or low 
expression of USP2 and then divided into USP2 
high expression group and USP2 low expression 
group. There were differences between these 
two groups in terms of T stage, pathological 
stage, gender, race, and prognosis survival. High 
expression of USP2 was associated with T1 stage 
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Figure 6. Expression of USP2 and clinical characteristics of KIRC patients. (A) Expression levels of USP2 between normal subjects and KIRC patients. 
(B) Effect of T stage on USP2 expression levels in KIRC patients. (C) Effect of gender on USP2 expression levels in KIRC patients. 

 
 

 
 
Figure 7. Co-expressed genes related to USP2 in KIRC. (A) Using LinkedOmics to analyze co-expressed genes associated with USP2 expression and 
volcano plots result. (B) Volcano plot of differentially expressed genes (DEGs) between the USP2 High group and the USP2 low group. (C) Venn 
diagram of intersecting genes between significantly co-expressed genes of USP2 and significant DEGs. 

 
 
(P = 0.006) and Stage I (P = 0.006), while low 
expression was associated with T2, T3, T4 stages 
(P = 0.006) and Stages II, III, IV (P = 0.006). 
Furthermore, high expression of USP2 was 
significantly correlated with good prognosis 
survival (P < 0.001). Based on the T stage, the 
differential expression of USP2 in KIRC patients 
was analyzed. USP2 was underexpressed in KIRC 
patients and overexpressed in healthy individuals 
(Figure 6A). According to the NCCN staging 
criteria for KIRC, the expression of USP2 in T1 
stage KIRC patients was higher than that in T2 
stage (P < 0.01) and T3, T4 stages (P < 0.001) 
(Figure 6B). Additionally, the expression level of 
USP2 was higher in female patients compared to 
males (P < 0.001) (Figure 6C). 
 

Analysis of USP2 co-expression genes in KIRC 
patients 
To further investigate the mechanism of USP2 in 
the development of KIRC, LinkedOmics was used 
to study the genes co-expressed with USP2 in 
KIRC patients (Figure 7A). The results showed 
that a total of 8,846 co-expressed genes in KIRC 
were significantly related to USP2 (FDR < 0.05, P 
< 0.05, |cor.| ≥ 0.3). Among these genes, 3,345 
genes were positively correlated with USP2 
expression while the others were negatively 
correlated (Figure 7B). Subsequently, DEGs were 
identified between the USP2 high group and 
USP2 low group in KIRC samples. A total of 1,541 
DEGs were identified (P < 0.05, |log2Fc| ≥ 1). 
Comparing these 1,541 USP2-related DEGs with 
the above 8,846 significantly co-expressed genes, 
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Figure 8. 357 KEGG/GO analysis of intersection genes. 

 
 
357 intersection genes were obtained (Figure 7C) 
and further functional analysis were performed. 
 
Functional enrichment analysis of USP2 in KIRC 
To study the biological functions of the 357 
overlapping genes, the differential gene sets and 
corresponding logFC values were first sorted out. 
After converting the inputmolecule list to IDs, the 
“clusterProfiler” package was used for 
enrichment analysis. The z-score value 
corresponding to each enrichment entry was 
calculated using the ‘GOplot’ package, and the 
visualization was performed using the ‘GGplot’ 
package. The top 12 pathways with the highest 
enrichment were shown in Figure 8. USP2 and its 
related genes mainly regulate the body’s immune 
function by modulating the activity of peptidases 
and endopeptidases. These pathways include 
negative regulation of peptidase activity, 
negative regulation of endopeptidase activity, 
peptidase inhibitor activity, endopeptidase 
inhibitor activity. In addition, there are still 
pathways related to immune regulation such as 
antimicrobial humoral response. The differential 
genes between the high and low USP2 expression 
groups were converted into IDs, and GSEA 
analysis was performed using the 
“clusterProfiler” package. A total of 9 pathways 
were selected with FDR (Q value) < 0.25 and P 
adjust < 0.05. The 4 pathways with nes > 2 and 
the 5 pathways with nes < -2 were visualized. 
Through GO/KEGG and GSEA analysis study 
showed that USP2 primarily exerted its immune 

function in the progression of KIRC by regulating 
the activity of peptidases and endopeptidases 
[26, 27], while also playing a regulatory role in 
humoral immunity. By using GSEA analysis, the 
significantly altered molecular pathways 
between the USP2 high group and the USP2 low 
group in the KIRC dataset were explored (Figure 
9). The results showed that USP2 could regulate 
immune-related processes or pathways such as 
folate metabolism [28-30], selenium 
micronutrient networks [31], innate immune 
system [32], signaling by interleukins [33], and 
metabolism of lipids [34, 35]. 
 
PPI interaction network of USP2 and 
intersection gene sets 
The STRING database was used to analyze the PPI 
network of overlapping genes, and the PPI 
network diagram was generated in Figure 10A. 
When the 357 intersecting genes were added to 
the USP2 input ID list, a total of 269 nodes and 
954 edges were obtained. The MCODE plugin in 
Cytoscape software was used to further analyze 
the PPI network to screen for hub genes. The 
MCODE analysis showed that the most important 
module (MCODE score = 10.727) was composed 
of 12 central genes (Figure 10B) with a total of 12 
nodes and 59 edges. Among them, the 
expression of CP, ITIH4, and TF in KIRC tumor 
tissues was extremely significantly higher than 
that in normal tissues (P < 0.001). The 
expressions of TTR, PLG, LPA, HRG, SERPINC1, 
APOA2, ALB, and AFM in KIRC tumor tissues were 
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Figure 9. GSEA enrichment analysis results for differential genes between the expression of USP2 on high and low groups in KIRC. (A) Proximal 

tubule transport. (B) Folate metabolism. (C) Selenium micronutrient network. (D) Innate immune system. (E) Metabolism of lipids. (F) Nuclear 
receptors metapathway. (G) Network map of sarscov2 signaling pathway. (H) SLC mediated transmembrane transport. (I) Signaling by interleukins. 

 
 

 
 

Figure 10. Study on PPI interaction network related to USP2. (A) PPI interaction network of USP2 with 357 intersecting genes. (B) Hub gene 
interaction network screened by MCODE. (C) Combined LASSO method for screening KIRC characteristic genes in GSE datasets. (D) Combined SVM 
method for screening KIRC characteristic genes in GSE datasets. (E) Interaction network of KIRC characteristic genes with USP2.  
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Figure 11. The OS situation of USP2-related genes in KIRC. (A) TF. (B) ITIH4. (C) PLG. (D) AFM. (E) GPC3. (F) SCN2A. (G) GPHN. (H) NETO2. (I) ALDOB. 
(J) GLYAT. (K) BDH2. (L) KCNMA1. (M) HAO2. (N) PFKP. 

 
 
extremely significantly lower than that in normal 
tissues (P < 0.001). High expression of ITIH4 and 
TF genes was significantly associated with poor 
overall survival in KIRC patients, whereas 
elevated levels of PLG and AFM genes correlate 
with good overall survival. In addition, the “lasso” 
and “svm” packages in R were used to screen for 
disease characteristic genes in the transcriptome 
sequencing datasets GSE781 and GSE53000 
(Figure 10C, 10D), which were contained KIRC 
tumor tissues and normal tissues sample in the 
GEO (https://www.ncbi.nlm.nih.gov/geo/). A 
total of 43 disease characteristic genes were 
obtained. And then, a PPI interaction network of 

USP2 and disease characteristic genes was 
constructed, and 26 nodes and 32 edges were 
obtained (Figure 10E). The high expression of 
GPC3 and SCN2A was associated with poor OS in 
patients (P < 0.01), while GPNH, ALDOB, GLYAT, 
BDH2, HAO2, PFKP (P < 0.001), NETO2 and 
KCNMA1 (P < 0.01) were associated with good OS 
in patients (Figure 11). 
 
Immune-related analysis 
The standardized pan-cancer dataset, TCGA 
TARGET GTEx (PANCAN, N = 19,131, G = 60,499), 
was downloaded, and the expression data of the 
USP2  gene  were  extracted.  150  marker  genes 

https://www.ncbi.nlm.nih.gov/geo/
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Figure 12. Analysis of USP2 and immune-related genes in KIRC. (A) Analysis of USP2 and immune regulation-related genes. (B) Analysis of USP2 

and immune checkpoint genes. 

 
 
from five types of immune pathways including 
chemokine (41), receptor (18), MHC (21), 
immunoinhibitor (24), immunostimulator (46) 
from each sample were selected from primary 
solid tumor, primary tumor, primary blood 
derived cancer - bone marrow, primary blood 
derived cancer - peripheral blood. All normal 
samples were filtered, and a log2(x+1) 
transformation for each expression value was 
performed. The Pearson correlation between 
USP2 (ENSG00000036672) and the marker genes 
of the five immune pathways were calculated. 
The results showed that USP2 was negatively 
correlated with most immune genes in the 
sample information of 530 KIRC patients. The 
expression of USP2 was related to the expression 
of most immune-related genes. In KIRC, the 
expression of USP2 was related to immune 
regulatory genes of ICOSLG, HHLA2, CD274, 

CD96, HLA-DOB, CCL7, CXCR1 (Figure 12A). Using 
the same data processing method, the 
correlation between USP and six types of 
immune checkpoint pathway genes was checked 
including inhibitory (24) and stimulatory (36) 
[36]. The results found that USP2 showed a 
negative correlation trend with most immune 
checkpoint pathway genes (Figure 12B). Immune 
checkpoint genes included TGFB1, BTLA, IL10, 
CX3CL1, CD27. Overall, USP2 was involved in the 
relevant immunological processes of KIRC. 
 
Immune infiltration analysis 
In recent years, scientific research has discovered 
that immune infiltration is associated with the 
occurrence, development, and metastasis of 
human cancers [37]. This study extracted the 
gene expression profiles of each tumor, mapped 
the      gene      profiles,      and      calculated      the 
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Figure 13. Analysis of USP2 in regulating immune cell infiltration. (A) The correlation between USP2 expression and immune infiltration in PRAD. 
(B) The correlation between USP2 expression and immune infiltration in THYM. (C) The correlation between USP2 expression and immune 

infiltration in KIRC. 

 
 
immunescore for each patient in all tumors. The 
Pearson's correlation coefficient between gene 
expression and immune infiltration scores in 
each tumor was calculated to identify 
significantly correlated immune infiltration 
scores. The results demonstrated that the 
expression of USP2 was significantly correlated 
with immune infiltration in 21 cancer types, 4 of 
which were positively correlated and 17 were 
negatively correlated with significant differences 
(Figure 13A, 13B). The cancer with the most 
positive correlation with USP2 expression was 
PRAD (r = 0.25), and the most negative 
correlation cancer was THYM (r = -0.53), among 
which KIRC and the expression of USP also had a 
negative correlation (r = -0.31) (Figure 13C). In 
the analysis of immune cells, the correlation 
between USP2 expression and different immune 
cell invasions in various cancer tissues was 
explored. In KIRC, KIRP, and LGG, the infiltration 
of Tregs cells was negatively correlated with 
USP2 expression. In addition, the infiltration of 
cancer-associated fibroblasts was negatively 
correlated with the expression of USP2 in KIRC 
and KIRP, while it was positively correlated in 
THYM and PRAD. The expression of USP2 was 
positively correlated with the infiltration of CD8+ 
T cells in PAAD and negatively correlated with 
TGCT (Figure 14). These findings suggested that 
USP2 might be a new immune-related tumor 
suppressor gene in KIRC. Additionally, there was 

no significant correlation between USP2 
expression and the infiltration levels of 
neutrophils, eosinophils, mast cells, monocytes, 
or dendritic cells. 
 
Expression of USP2 at the single-cell level 
Single-cell transcriptome sequencing provides 
enormous potential for analyzing the potential 
functions of candidate molecules. In acute 
myeloid leukemia (AML), the expression of USP2 
was positively correlated with DNA repair, and 
negatively correlated with differentiation, DNA 
damage, hypoxia, and quiescence. In the realm of 
BRCA, USP2 exhibited a positive correlation with 
all tumors’ biological behaviors, encompassing 
angiogenesis, apoptosis, cell cycle, 
differentiation, DNA damage, DNA repair, EMT, 
hypoxia, inflammation, invasion, metastasis, 
proliferation, quiescence, and stemness. 
However, it manifested a negative correlation 
trend with all tumors’ biological behaviors in 
LUAD. In particular, USP2 demonstrated a potent 
negative correlation with the oncological 
biological behavior of DNA damage within AML, 
retinoblastoma (RB), and uveal melanoma (UM). 
USP2 exhibited a positive association with the 
oncological DNA repair behavior in AML, whilst 
presenting a negative correlation in RB and UM 
(Figure 15A). Additionally, a high correlation 
between USP2 expression and the risk of 
affliction in BRCA, BLCA, LUSC, and HNSC were 
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Figure 14. Expression of USP2 in different immune cells analyzed using various algorithms. (A) Timer algorithm. (B) EPIC algorithm. (C) IPS algorithm. 
(D) MCPcounter algorithm. (E) QUANTISEQ algorithm. (F) xCELL algorithm. (G) CIBERSORT algorithm. 

 
 
found (P < 0.05) (Figure 15B). Contrastingly, a 
negative correlation was observed with the risk 
of affliction in ACC, KIRP, KIRC, PAAD, and MESO 
(P < 0.05). TISCH2 database (https://tisch.comp-
genomics.org) was employed to analyze the 
expression of USP2 within diverse cellular types 
in the KIRC dataset. The results showed that, in 

KIRC data sets, the expression of USP2 was higher 
in regulating endothelial, fibroblasts, and 
malignant (Figure 15C). The KIRC_GSE171306 
dataset was selected to further analyze the 
expression of USP2 in different cell populations. 
USP2 was primarily expressed within malignant, 
CD8T,  Endothelial,  Mono/Macro,  and  NK  cells 

https://tisch.comp-genomics.org/
https://tisch.comp-genomics.org/
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Figure 15. Expression of USP2 at the single-cell level. (A) Using the CancerSEA database to explore the correlation between USP2 and the biological 
behavior of cells in different tumor tissues. (B) Analysis of the risk relationship between different cancers and USP2 expressions based on the 

CancerSEA database. (C) Cellular USP2 expression in 6 KIRC single cell data sets in the TISCH2 database. (D) to (G) Single-cell sequencing analysis 
of the USP2 gene in GSE171306. 

 
 
(Figure 15D to 15G). At present, the clinical 
diagnosis and treatment of renal carcinoma are 
well-established. KIRC represents the principal 
type of renal cancer, and the recurrence rate of 
radical nephrectomy for advanced renal clear cell 
carcinoma is 20 - 40%. A plenty of studies suggest 
that USP2 plays a pivotal regulatory role in 
processes such as tumor migration, apoptosis, 
and diffusion [38, 39]. The statistical results 
confirmed that the expression of USP2 in all 
cancers was significantly higher in normal tissues 
than in tumor tissues, which suggested that USP2 
could potentially be a tumor suppressor gene. 

The CCLE database showed that USP2 had higher 
expression levels in bone and testes. Among KIRC 
cell lines, the NCIH2004RT cell line had the 
highest expression, while the KMRC1 cell line had 
the lowest expression (Figure 16). This study 
investigated the clinical significance and the role 
of USP2 in KIRC through bioinformatics analysis 
and predicted the role and mechanism of USP2 in 
the occurrence of KIRC through enrichment 
analysis. However, the specific mechanism of 
action and clinical application still need further 
verification. 
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Figure 16. The expression of USP2 in tissues and cells in the CCLE database. (A) The expression of USP2 in 76 types of tumors in the CCLE database. 
(B) The expression of USP2 in renal cell carcinoma cell lines. 
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