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Cirrhosis is a common chronic liver disease, and early diagnosis is meaningful for delaying the course of the disease 
and improving the quality of patients’ life. Traditional diagnostic methods for cirrhosis rely on imaging 
examinations, blood biochemical indicators, and pathological examinations. However, these methods often have 
certain limitations such as high costs, low accuracy in early diagnosis, and discomfort caused by invasive 
examinations. This study proposed a cirrhosis prediction system based on a deep learning convolutional neural 
network (CNN) optimized with advanced technologies of multi-level feature fusion, attention mechanisms, and 
residual connections. The proposed system integrated clinical data, imaging data, and biochemical indicators of 
patients, automatically extracted features, and performed classification prediction using the CNN model to 
achieve early diagnosis and risk assessment of cirrhosis. The results demonstrated that the CNN-based cirrhosis 
prediction system exhibited higher accuracy, stability, and reliability than that of traditional diagnostic methods. 
Particularly in the integration of multimodal data, the proposed system effectively enhanced prediction 
performance and significantly improved the early diagnosis rate of cirrhosis. Furthermore, the system offers 
personalized treatment and management recommendations to assist physicians in decision-making, thereby 
improving the precision of clinical treatment. This study presented a novel technical solution for the early 
diagnosis of cirrhosis with significant clinical application prospects. 
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Introduction 
 
Cirrhosis is the end-stage manifestation of 
widespread liver injury and fibrosis caused by 
various chronic liver diseases and characterized 
by high mortality and morbidity rates. According 
to the World Health Organization (WHO), 
cirrhosis has become one of the major public 
health challenges globally, particularly in the 
Asian region, where its incidence and mortality 
rates remain persistently high [1]. Cirrhosis not 
only directly leads to severe consequences such 

as liver failure and liver cancer but also imposes 
a substantial long-term socio-economic burden 
[2, 3]. The early detection and intervention in 
cirrhosis are significant in improving patient 
prognosis, reducing mortality, and alleviating the 
socio-economic burden. Currently, the diagnosis 
of cirrhosis primarily relies on imaging studies, 
biochemical blood markers, and pathological 
examinations. Common imaging techniques 
including ultrasound, computed tomography 
(CT), and magnetic resonance imaging (MRI) can 
assess liver structure and function but exhibit 
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limited sensitivity in the early stages of cirrhosis 
[4]. Biochemical markers including liver function 
tests and liver fibrosis scores such as aspartate 
aminotransferase to platelet ratio index (APRI) 
and fibrosis-4 score (FIB-4) can provide certain 
insights although they are susceptible to 
interference from various factors [5]. While liver 
biopsy is considered the gold standard for 
definitive diagnosis [6], its invasiveness and 
associated patient discomfort make it impractical 
as a routine screening method. In recent years, 
liver elastography techniques such as transient 
elastography and magnetic resonance 
elastography have gained widespread attention 
due to their non-invasiveness and ease of use [7, 
8]. However, those traditional diagnostic 
methods still face limitations, which include high 
costs, complex procedures, and insufficient 
sensitivity to detect early subtle changes. 
 
With the advancement of computer hardware 
performance, artificial intelligence (AI) 
technologies, particularly deep learning 
methods, have made significant progress in the 
field of medical image analysis [9]. Deep learning 
is a learning approach that simulates the neural 
network mechanism of the human brain, 
enabling automatic feature extraction through 
training on large datasets, and performing tasks 
such as classification, regression, and prediction. 
Convolutional neural networks (CNN), a typical 
architecture in deep learning, automatically 
extracts features from input data through 
convolutional layers and has been widely applied 
in image processing, speech recognition, and 
natural language processing [10]. In the field of 
medical imaging, CNNs can automatically extract 
texture, shape, and edge features from image 
data of CT, MRI, and ultrasound, significantly 
improving diagnostic accuracy in interesting 
areas such as ovarian tumors [11], colon cancer 
[12], and medical prediction systems [13]. There 
has been an increasing number of studies on CNN 
models for liver disease prediction with 
preliminary progress recently, particularly in the 
areas of liver image analysis, blood biochemical 
markers, and the integration of clinical data [14]. 
Previous research has demonstrated that deep 

learning models based on CT or MRI images can 
achieve high-precision detection of liver lesions 
and show promise in identifying early 
manifestations of cirrhosis [15, 16]. Additionally, 
combining radiomics with deep learning 
techniques by extracting many high-dimensional 
imaging features can reveal subtle changes in 
liver fibrosis development and predict the 
progression of cirrhosis [17]. In animal studies, 
research has also confirmed that CNNs can 
effectively identify fibrotic regions in mouse liver 
tissue, providing potential for translational 
medical applications [18]. Meanwhile, some 
researchers have proposed multimodal deep 
learning models that combine blood biochemical 
markers with imaging data, which can further 
enhance the predictive performance for liver 
fibrosis and cirrhosis [19]. However, there is still 
a limited amount of CNN research specifically 
targeting early prediction of cirrhosis. Despite the 
progress made in existing studies, predicting 
cirrhosis using deep learning still faces numerous 
challenges, which include the diversity and 
quality control issues of imaging and clinical data 
that require optimization of data collection, 
annotation, management processes and the 
exploration of how to implement the model’s 
application in real-world clinical settings 
including the establishment of multi-center, 
large-scale datasets, improving model 
interpretability, and developing mechanisms for 
collaboration between physicians and AI. In 
addition, the sensitivity and specificity of 
traditional imaging and AI models need further 
improvement to better meet the demands of 
different clinical scenarios. 
 
This research proposed a cirrhosis prediction 
method based on an improved CNN model, 
aiming to combine image features and biomarker 
data to propose a more accurate cirrhosis 
prediction model. Compared to traditional CNN, 
this study optimized its architecture by 
employing innovative technologies of multi-level 
feature fusion, attention mechanisms, and 
residual connections, enhancing the model’s 
predictive accuracy and generalization 
capabilities. The proposed CNN-based early 
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prediction model for cirrhosis would hold the 
potential to overcome the limitations of 
traditional methods and improve the efficiency 
of early screening for cirrhosis. The findings of 
this research could provide valuable reference 
for the subsequent application of deep learning 
in the early diagnosis of other chronic liver 
diseases, fostering a deeper integration of 
medical artificial intelligence with clinical 
practice and was expected to have a positive 
impact on reducing the mortality rate of cirrhosis 
patients and improving public health standards. 
 
 

Materials and methods 
 
Basic CNN model framework 
The basic CNN structure consists of multiple 
convolutional layers, pooling layers, and fully 
connected layers [20]. The convolution operation 
was the core of CNN as below. 
 
𝑌𝑖,𝑗,𝑘 = ∑ ∑ 𝑋𝑖

𝑁
𝑛=1

𝑀
𝑚=1 +𝑚, 𝑗 + 𝑛 ⋅ 𝑊𝑚,𝑛,𝑘 + 𝑏𝑘        (1) 

 
where X was the input image with size H × W × C. 
W was the convolution kernel (filter) with size M 
× N × C. Y was the output of the convolutional 
layer with size (H − M + 1) × (W – N + 1) × K. K was 
the number of convolution kernels. bk was the 
bias of the kth convolution kernel. 𝑚 and 𝑛 in the 
convolution operation were the dimensional 
indexes of the convolution kernel, controlling the 
sliding window of the convolution kernel on the 
input image. With this convolution operation, the 
convolution kernel slid over the input image with 
a step size of 1, and the weighted sum of local 
regions computed by dot multiplication would 
produce new feature maps. As the number of 
convolutional layers increased, the model could 
gradually extract more complex semantic 
information from local features. The pooling 
operation typically follows the convolutional 
layers to reduce the size of the feature map while 
retaining essential feature information. The most 
used pooling operations are max pooling and 
average pooling. It was assumed that the size of 
the input feature map was H × W × C. The pooling 
operation usually used a 2 × 2 pooling window 

and step size of 2. The pooled feature map size 

was 
𝐻

2
×

𝑊

2
× 𝐶 . The pooling operation could 

reduce the amount of computation and prevent 
overfitting with the equation below. 
 
𝑌𝑖,𝑗,𝑘 = max(𝑋2𝑖,2𝑗,𝑘 , 𝑋2𝑖+1,2𝑗,𝑘 , 𝑋2𝑖,2𝑗+1,𝑘 , 𝑋2𝑖+1,2𝑗+1,𝑘)  (2) 
 
where the maximum pooling (Max pooling) 
operation was used to output the maximum 
value within each pooling window. After passing 
through multiple convolutional and pooling 
layers, the output feature map was flattened and 
fed into the fully connected layer. The fully 
connected layer performed a linear 
transformation using a set of weight matrices to 
map the feature map into the prediction space 
for classification or regression tasks. If the input 
features to the fully connected layer were Fflatten 
(size N × 1), the output Foutput of the fully 
connected layer was as follows. 
 
𝐹𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑊𝑓𝑐𝐹𝑓𝑙𝑎𝑡𝑡𝑒𝑛 + 𝑏𝑓𝑐                              (3) 

 
where Wfc was the weight matrix of the fully 
connected layer with size Nfc × N. bfc was the bias 
term with size Nfc × 1. Foutput was the output of the 
fully connected layer. At the last layer of the CNN, 
an activation function such as Softmax or Sigmoid 
was used to output the prediction result. For 
binary classification problems, the output layer 
could be a Sigmoid activation function as follows. 
 
𝑃(𝑐𝑖𝑟𝑟ℎ𝑜𝑠𝑖𝑠) = 𝜎(𝑊𝑜𝑢𝑡𝐹𝑓𝑢𝑠𝑖𝑜𝑛 + 𝑏𝑜𝑢𝑡)               (4) 

 
where σ was the Sigmoid function. Wout and bout 
were the weights and biases of the output layer. 
For multi-classification problems, the Softmax 
activation function was usually used in the output 
layer as below. 
 

𝑃(𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦𝑖) =
𝑒𝑥𝑝(𝑊𝑜𝑢𝑡,𝑖∙𝐹𝑓𝑢𝑠𝑖𝑜𝑛+𝑏𝑜𝑢𝑡,𝑖)

∑ 𝑒𝑥𝑝(𝑊𝑜𝑢𝑡,𝑗∙𝐹𝑓𝑢𝑠𝑖𝑜𝑛+𝑏𝑜𝑢𝑡,𝑗)𝑗
          (5) 

 
The Softmax function was used to calculate the 
probabilities for each class with the output being 
the predicted probabilities for each class. 
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Figure 1. Structural diagram of multi-level feature fusion. 

 
 
Model improvements 
(1) Multi-level feature fusion 
To fully exploit feature information at different 
scales, this research proposed a multi-level 
feature fusion strategy, which enhanced the 
model’s multi-level understanding of cirrhosis 
images by combining features from both shallow 
and deep convolutional layers, thereby 
improving the accuracy of cirrhosis diagnosis. 
Specifically, features from intermediate layers of 
the convolutional network were fused to 
integrate low-level and high-level semantic 
information, which enhanced the network’s 
representational capacity for different regions of 

the image, particularly for the subtle features of 
complex diseases like cirrhosis (Figure 1). It was 
supposed that there were two convolutional 
layers with output feature maps F1(H2 × W2 × C21) 
and F2(H × W × C) from the shallow like the 
second convolutional layer and deep such as the 
fourth convolutional layer of the network, 
respectively. These feature maps size might be 
different and must be processed. The resize 
operation was used to adjust the feature map to 
the same height H2 and width W2 by bilinear 
interpolation with the specific process shown 
below. 
 

 

Image 

Conv1: F1 (H1 x W1 x C1)  

Pooling: F1 pool (H1' x W1' x C1)  

Conv2: F2 (H2 x W2 x C2)  

Pooling: F2 pool (H2' x W2' x C2) 

Feature map size adjustment operation) 

Resize: F1_pool -> F2' Resize: F2_pool -> F1' 

Concat 

F
fusion

 = Concat (F1' x F2' ) 

F
fusion

 = (H x W x (C1 + C2)) 

Convolutional layer + fully connected layer 

Feature processing 

Diagnosis of liver cirrhosis (output) 
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𝐹𝑓𝑢𝑠𝑖𝑜𝑛 = 𝐶𝑜𝑛𝑐𝑎𝑡(𝑅𝑒𝑠𝑖𝑧𝑒(𝐹1, 𝐻2,𝑊2), 𝑅𝑒𝑠𝑖𝑧𝑒(𝐹2, 𝐻1,𝑊1))       (6) 
 
The resize operation refers to the resizing of 
feature maps to fit the target dimensions [21]. 
The interpolation method could be bilinear 
interpolation to ensure that the resized image 
would not lose too much detail. The Concat 
operation indicated that the two feature maps, 
after resizing, were concatenated along the 
channel dimension i.e. the third dimension [22]. 
Through such feature fusion, shallow and deep 
features were combined to form a fused feature 
map Ffusion that contained rich semantic 
information. 
 
(2) Self-attention mechanism 
The self-attention mechanism was designed to 
calculate attention weights for each image 
location, allowing the model to adaptively focus 
on key information areas in the input image and 
ignore irrelevant parts [23]. By incorporating the 
self-attention mechanism, CNN could more 
effectively model the image features of cirrhosis, 
particularly when identifying subtle changes and 
abnormal areas such as lesions or hardened 
regions in the liver. The key idea of the self-
attention mechanism was to calculate the 
attention weights of each position with respect 
to other positions based on the relationship 
between the query, key, and value, thereby 
generating a weighted feature map. The self-
attention mechanism was calculated using the 
following equations. 
 

𝐴𝑖𝑗 =
exp⁡(𝑄𝑖∙𝐾𝑗)

∑ exp⁡(𝑄𝑖∙𝐾𝑘)
𝑁
𝑘=1

                                              (7) 

 

𝑉𝑖
𝑛𝑒𝑤 = ∑ 𝐴𝑖𝑗𝑉𝑗

𝑁
𝑗=1 ⁡                                               (8) 

 
where Qi and Kj were the query and key vectors 
from the input features, respectively. Vj was the 
value vector, which represented the information 
of each position. Aij was the attention weight of 
position i to position j. Based on weighting and 
calculating attention weight, the new feature 
map 𝑉𝑖

𝑛𝑒𝑤  was obtained, which contained more 
information about cirrhosis key areas. 
 

(3) Residual connections 
In deep neural networks, as the number of layers 
increases, the model may encounter the problem 
of vanishing or exploding gradients. These issues 
can hinder the optimization process during 
training, especially in deep networks. As the 
network depth increases, information from 
earlier layers may gradually be lost during 
transmission, making gradient propagation more 
difficult. To address these challenges and 
accelerate the training process, residual 
connections were introduced. Residual 
connections facilitated the flow of information by 
“skipping” certain layers and directly passing the 
input to subsequent layers. By providing shortcut 
paths, the vanishing and exploding of gradients 
were prevented. The residual connection core 
idea was that, at a certain layer of the network, 
the input X was not only processed by 
conventional convolution operations or other 
transformations F (X, {Wi}), but was also directly 
passed to the next layer of the network. The 
direct transfer formed the so-called “shortcut”, 
allowing the input information to directly 
influence the final output without undergoing 
transformations from all layers as follows. 
 
𝑌𝑟𝑒𝑠 = 𝑋 + 𝐹(𝑋, {𝑊𝑖})                                          (9) 
 
where X was the input feature. F (X, {Wi}) was the 
features obtained through network 
transformations such as convolutional 
operations and activation functions. This part 
was the “regular” operation of the network. Yres, 
the output of the residual block, was equal to the 
sum of the input X and the transformed result of 
F (X, {Wi}). This structure introduced shortcut 
paths that directly added the input XXX to the 
transformed feature maps without the need for 
processing through all layers. This approach 
effectively mitigated the vanishing gradient 
problem and accelerated the training process. 
 
(4) Comprehensive feature fusion and 
classification 
To predict cirrhosis more accurately, this study 
combined imaging features with clinical data 
such as biochemical indicators related to liver 
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function and patient medical history for 
comprehensive analysis. Image data were 
extracted using CNN, while clinical data were 
processed by a multi-layer perceptron (MLP) 
model. Ultimately, the features from both 
sources were fused and passed into the 
classification layer for binary prediction. For 

image data processing and feature 
extraction, the image data Ximage was input into 

the CNN for feature extraction. After multiple 
convolutional layers and pooling layers, the 
model obtained a feature map Fimage containing 
high-level semantic information as follows. 
 
Input: Ximage (size H×W×Cimage) 
 
Output: Fimage (size Dimage, feature vector) 
 
The CNN part extracted local and global features 
such as liver morphological changes and lesion 
areas related to cirrhosis in the image through a 
combination of convolution, pooling, and fully 

connected layers. For clinical data processing 
and feature extraction, clinical data Xclin 

contained the patient’s biochemical indicators 
such as alanine aminotransferase (ALT), 
aspartate aminotransferase (AST), bilirubin, 
platelet count and other important physiological 
indicators. These data were numerical data, so 
feature extraction and nonlinear mapping 
through MLP with full connection layer were 
needed. 
 
Input: Xclin (size Nclin) 
 
Output: Fclin (size Dclin) 
 
MLP model learned important features in clinical 
data through layer-by-layer linear 
transformations and nonlinear activation 
functions such as ReLU. The structure of MLP was 
expressed below. 
 
𝐹𝑐𝑙𝑖𝑛 = 𝜎(𝑊𝑀𝐿𝑃𝑋𝑐𝑙𝑖𝑛 + 𝑏𝑀𝐿𝑃)                          (10) 
 
where WMLP was the weight matrix of the MLP 
layer. bMLP was the bias term. σ was the activation 

function. For feature fusion, the image features 

Fimage and clinical data features Fclin were 
extracted from different sources, which 
contained different types of information. To 
enable the model to utilize the two parts of 
information at the same time, they were fused 
into a comprehensive feature vector Ffusion by 
concatenation operation as below. 
 
𝐹𝑓𝑢𝑠𝑖𝑜𝑛 = 𝐶𝑜𝑛𝑐𝑎𝑡(𝐹𝑖𝑚𝑎𝑔𝑒 , 𝐹𝑐𝑙𝑖𝑛)                      (11) 

 
After concatenation, the feature vector Ffusion 
contained the information of liver imaging 
features and clinical data features as shown 
below. 
 

𝐹𝑓𝑢𝑠𝑖𝑜𝑛 ∈ ℝ𝐷𝑖𝑚𝑎𝑔𝑒+𝐷𝑐𝑙𝑖𝑛                                       (12) 

 
For the classification layer and output, the fused 
feature vector Ffusion was passed to a fully 
connected layer, which was used to make a 
binary prediction as cirrhosis or non-cirrhosis 
based on the integrated features. The probability 
of cirrhosis, P (cirrhosis), was output through a 
Sigmoid activation function as the prediction 
result of the model. The output of the fully 
connected layer was expressed as below. 
 
𝑃(𝐶𝑖𝑟𝑟ℎ𝑜𝑠𝑖𝑠) = ⁡𝜎(𝑊𝑜𝑢𝑡𝑋𝑓𝑢𝑠𝑖𝑜𝑛 + 𝑏𝑜𝑢𝑡)           (13) 

 

where ⁡𝑊𝑜𝑢𝑡 ∈ ℝ（𝐷𝑖𝑚𝑎𝑔𝑒+𝐷𝑐𝑙𝑖𝑛）×1  was the 
weight matrix of the classification layer. bout was 
the bias term of the classification layer. σ was the 
Sigmoid activation function as shown in equation 
(14). 
 

σ(𝑧) =
1

1+exp⁡(−𝑧)
                                                   (14) 

 
The Sigmoid function output a value between 0 
and 1, representing the predicted probability 
after the integration of image and clinical data. 
Specifically, an output value close to 1 indicated 
that the patient was likely to have cirrhosis, while 
an output value close to 0 suggested that the 
patient was normal. To train the model, the 
binary cross-entropy loss function that measured 
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the difference between the output of the model 
and the true labels was shown below. 
 
𝐿 = −[𝑦𝑙𝑜𝑔(𝑝) + (1 − 𝑦)log⁡(1 − 𝑝)]           (15) 
 
where y was the true label as 0 for non-cirrhosis 
and 1 for cirrhosis. p was the predicted 
probability of the model output 𝑃(𝐶𝑖𝑟𝑟ℎ𝑜𝑠𝑖𝑠). To 

minimize the loss function, the Adam 
optimization algorithm was used to update the 
parameters. 
 
Data source 
To evaluate the effectiveness of the CNN-based 
cirrhosis prediction model, this study utilized 
various medical datasets for validation and 
assessed the model’s performance in early 
prediction of cirrhosis. The experimental data 
were collected from multiple hospitals and 
included clinical data of cirrhosis patients. The 
dataset comprised 500 patients including 250 
cirrhosis patients and 250 non-cirrhosis patients. 
The dataset included several physiological and 
clinical characteristics of the patients including 
but not limited to gender, age, liver function 
markers such as ALT, AST, gamma-glutamyl 
transferase (GGT), total bilirubin, blood routine 
markers including white blood cell count (WBC) 
and hemoglobin concentration (Hb), abdominal 
imaging findings including liver echogenicity and 
spleen volume, and liver stiffness scores 
measured using transient elastography. All 
procedures of this study were approved by the 
Institutional Review Board (IRB) of Luohe Medical 
College (Luohe, Henan, China). 
  
Evaluation metrics 
This study first performed preprocessing on the 
imaging data by applying image augmentation 
techniques to standardize the CT/MRI images, 
ensuring data quality during model training. 
Additionally, a cross-validation method was 
employed to ensure the reliability of the 
experimental results with the dataset randomly 
divided into a training set (80%) and a testing set 
(20%). In evaluating the model’s performance, 
this study utilized commonly used evaluation 
metrics including accuracy, sensitivity, specificity, 

F1 score, and precision shown in the equations 
below. 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                 (16) 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                               (17) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
                                                      (18) 

 

𝐹1 =2×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
                                 (19) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                          (20) 

 
where TP was true positive. TN was true negative. 
FP was false positive. FN was false negative. 
 
Model performance validation and comparative 
analysis 
To further validate the effectiveness of the 
proposed CNN model, this study compared it 
with several common traditional machine 
learning models including support vector 
machine (SVM), decision tree (DT), and random 
forest (RF). All traditional machine learning 
models were constructed and trained using the 
Scikit-learn toolkit (https://scikit-learn.org/). 
During the comparison process, the performance 
of each model based on metrics such as accuracy, 
sensitivity, specificity, and F1 score was 
evaluated to comprehensively assess the 
predictive capability of the deep learning model 
proposed in this research. 
 
Sensitivity analysis of network architecture 
To investigate the impact of different network 
layers on the results, a sensitivity analysis of the 
CNN model was further conducted. The focus of 
the analysis was on the influence of the 
convolutional layers and pooling layers on 
feature extraction and classification 
performance. 
 
Development and testing method of the CNN-
based cirrhosis prediction system 
To validate the clinical application potential of 
the   CNN-based   cirrhosis   prediction  system,  a 

https://scikit-learn.org/
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Figure 2. Evaluation indexes of the CNN-based cirrhosis prediction model (training set and test set). 

 
 
complete prediction system was developed, 
encompassing modules for early cirrhosis 
prediction, clinical data analysis, and 
personalized treatment recommendations. The 
system testing design included two main 
modules. The early diagnosis and risk assessment 
module for cirrhosis input the patient’s 
physiological, blood, and imaging data to predict 
their cirrhosis risk level, and the treatment and 
management recommendations module for 
cirrhosis patients generated personalized 
intervention and treatment plans based on the 
prediction results and individual patient 
characteristics. The system input data consisted 
of clinical data and imaging records collected 
from 2018 to 2023, covering patient information 
from multiple hospitals with a total sample size 
of 500 cases. During the testing process, the 
system performed a comprehensive analysis of 
various patient indicators including ALT and AST 
levels and imaging findings and classified 
predictions based on established high-risk 
standards. Additionally, the system provided 
personalized treatment and management 
recommendations for high-risk patients, 
considering their specific clinical indicators. In 
terms of regional analysis, the system integrated 
data from regions of Shanghai City, Guangdong 
Province, Jiangsu Province, Beijing City, Zhejiang 

Province, Sichuan Province, Shaanxi Province, 
Tianjin City, Shandong Province, Hubei Province, 
and Fujian Province to forecast future cirrhosis 
incidence trends across different areas and offer 
targeted screening and intervention suggestions. 
 
 

Results and discussion 
 

CNN-based cirrhosis prediction model  
The CNN model developed in this study 
demonstrated excellent performance in the 
cirrhosis prediction task, achieving prediction 
accuracies of 95.4% and 92.6% on the training 
and testing datasets, respectively. The sensitivity 
and specificity were 90.5% and 94.2%, 
respectively, with an F1 score of 92.1%, indicating 
a strong ability to differentiate between cirrhosis 
and non-cirrhosis patients (Figure 2). This result 
was consistent with the previous study, where 
the deep convolutional neural network model for 
cirrhosis diagnosis achieved an accuracy of 
96.8%, outperforming traditional methods such 
as SVM [24]. To comprehensively evaluate the 
performance of the proposed model, it was 
compared with three classical models of SVM, 
DT, and RF. The results showed that the CNN 
model outperformed the others across multiple 
metrics including accuracy, sensitivity, specificity, 
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Figure 3. Comparative evaluation of different machine learning models in cirrhosis prediction. 

 
 
Table 1. Sensitivity analysis of different network layers in the CNN model. 
 

Network layer Sensitivity Specificity F1 score 

Original CNN model 90.50% 94.20% 92.30% 
Remove convolutional layers 85.10% 90.40% 87.50% 
Remove pooling layer 88.30% 91.70% 89.90% 
Use only fully connected layer 82.20% 89.50% 85.80% 
Optimize the convolutional and pooling layers 93.00% 95.10% 94.00% 

 
 
and F1 score with a particularly significant 
advantage in F1 score (Figure 3). The previous 
study also indicated that, although RF performed 
well in several traditional tasks with an F1 score 
of 90.1%, it was still less accurate and stable than 
deep learning models in image recognition tasks 
[25]. This study further analyzed the contribution 
of different network layers in the CNN model to 
its performance. Sensitivity analysis revealed 
that both the convolutional and pooling layers 
were crucial for feature extraction. Removing the 
convolutional layer resulted in a 4.8% decrease in 
the F1 score, while removing the pooling layer led 
to a 2.4% decrease (Table 1). This observation 
supported the study by Byra et al. who evaluated 
fatty liver changes based on the Inception-
ResNet-v2 architecture, where high performance 
was attributed to the deep feature learning 
capabilities of the multi-layer convolutional 

structure [26]. Brattain et al. suggested that, in 
liver fibrosis staging, the CNN model achieved an 
AUROC of 0.890 in assessing shear wave 
elastography image quality, significantly 
outperforming traditional stiffness indices with 
AUROC of 0.740 [27]. This further validated that 
deep networks excelled in feature representation 
in medical images compared to models based on 
shallow structures. Additionally, when compared 
with pre-trained networks like AlexNet-CNN, the 
results showed that the CNN model proposed in 
this study achieved higher accuracy in cirrhosis 
stage classification. Yu et al. confirmed that such 
models outperformed SVM and multi-class 
logistic regression (MLR) methods in metrics like 
AUROC, sensitivity, and specificity [28], which 
was highly consistent with the results of this 
study. 
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Table 2. Prediction results of high-risk cirrhosis patients. 
 

Indicators Total 
number of 

patients 

Number of 
high-risk 
patients 

Patients 
predicted to 
be high risk 

Prediction 
accuracy 

(%) 

Predictive 
sensitivity 

(%) 

Predictive 
specificity 

(%) 

F1 
score 
(%) 

ALT > 40 U/L 500 200 126 94.2 90.5 94.2 92.1 
AST > 40 U/L 500 180 115 92.8 91.2 93.7 91.6 
Imaging findings 500 150 95 91.3 89.7 92.4 90.5 
Comprehensive 
judgment 

500 180 113 94.2 90.5 94.2 92.6 

 
 
Table 3. Treatment recommendations generated by the proposed system for 10 high-risk patients. 
 

Patient ID Age Gender ALT (U/L) AST (U/L) Imaging findings Treatment recommendations 

P001 55 Male 185 200 Significant liver fibrosis Regular liver imaging examination, antiviral 
therapy, and improved diet 

P002 63 Female 160 175 Liver structural changes Increasing liver function monitoring, improving 
lifestyle, and avoiding alcohol and excessive fatigue 

P003 58 Male 190 210 Liver sclerosis changes Enhanced surveillance, antiviral therapy and weight 
control 

P004 70 Female 210 220 Mild fibrosis Regular early screening to optimize treatment 
P005 50 Male 180 195 Irregular liver structure Regular checkups, improving diet and lifestyle 

habits, and considering medication interventions 
P006 62 Female 170 185 Tiny liver nodules Continuing observation, antiviral therapy, and 

reducing alcohol consumption 
P007 59 Male 150 165 Mild fatty liver Healthy diet, exercise, and regular checkups 
P008 54 Female 140 155 Normal liver structure Maintaining a healthy lifestyle and getting regular 

screening 
P009 68 Male 175 185 Calcified changes in the 

liver 
Monitoring should be strengthened to avoid an 
increased burden on the liver 

P010 61 Female 190 205 Progression of liver fibrosis Antiviral therapy and regular liver function 
assessments 

 
 
CNN model performance test and clinical 
application 
By inputting data from 500 patients into the 
cirrhosis prediction system, the results showed 
that, for patients with ALT > 40 U/L, the proposed 
system achieved a prediction accuracy of 94.2%, 
sensitivity of 90.5%, specificity of 94.2%, and an 
F1 score of 92.1%. For patients with AST > 40 U/L, 
the prediction accuracy was 92.8%, sensitivity 
was 91.2%, specificity was 93.7%, and the F1 
score was 91.6%. For patients with abnormal 
imaging findings, the prediction accuracy was 
91.3%, and the overall prediction accuracy 
reached 94.2% (Table 2). These results were 
comparable to the performance of the DLRE 
system proposed by Wang et al., which achieved 
an AUROC of 0.970 in predicting F4 stage 
cirrhosis [29]. 
 

The proposed system of this study integrated 
individual patient characteristics and imaging 
findings to generate personalized treatment 
recommendations. For instance, for certain high-
risk patients, the system would recommend 
frequent liver imaging exams, antiviral 
treatment, and lifestyle modifications. The 
results of treatment recommendations 
generated by the system for 10 high-risk cirrhosis 
patients included medications, regular check-
ups, and dietary adjustments. Each patient’s 
treatment plan was tailored based on their 
specific liver function markers, imaging changes, 
and lifestyle factors (Table 3). 
 
Further regional analysis indicated that the 
system predicted an increase in the incidence of 
cirrhosis in the coming years, especially among 
the elderly population. In particular, the 
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Figure 4. Prediction results of cirrhosis incidence trends in different regions of China. A. Current incidence rate of cirrhosis. B. Predicted increase 
in incidence rate. C. Key age groups. 

 
 
incidence of cirrhosis in Shanghai was expected 
to continue to rise, especially among the elderly 
population over the age of 65. The system 
suggested strengthening early screening for 
elderly patients and increasing their focus in 
healthcare. The incidence of cirrhosis in 
Guangdong and Jiangsu provinces might increase 
in the next 3 - 5 years, especially among males 
aged 50 - 60. Therefore, the system 
recommended increasing the frequency of early 
screening in these areas and strengthening 
interventions for high-risk groups. The incidence 
of cirrhosis in Beijing and Zhejiang Province might 
slightly rise in the coming years, especially among 
people aged 40 – 60. The system suggested 
optimizing screening processes and enhancing 
health education to address this challenge. 
Sichuan and Shaanxi provinces showed a 
relatively stable trend in the incidence of 
cirrhosis, but there was a significant potential for 
increased incidence among the elderly 
population, and the system recommended 
increasing screening frequency for the elderly 
and focusing on lifestyle interventions. Tianjin, 
Shandong, Hubei, and Fujian showed a certain 
increasing trend in the incidence of cirrhosis, 
particularly among the middle-aged and elderly 
population, and the system suggested increasing 
health management for the middle-aged and 
elderly and increasing the frequency of related 
screenings (Figure 4). Based on the results, the 
incidence of cirrhosis demonstrated different 
increasing trends in high-incidence areas. The 
high-incidence areas such as Shanghai, 

Guangdong, and Jiangsu particularly need to 
strengthen screening and early intervention 
measures for high-risk groups. Areas like Sichuan 
and Shaanxi, although having a relatively stable 
incidence rate, have a significant potential for 
increased incidence among the elderly 
population, indicating that these areas should 
increase screening frequency for elderly patients. 
 
This research proposed a CNN model-based 
cirrhosis prediction system, which possessed 
high predictive accuracy and strong clinical 
application value. The system was not only 
capable of assisting physicians in early diagnosis 
but also generating personalized treatment 
recommendations based on the clinical data and 
imaging presentations of patients. Furthermore, 
the system could conduct geographical analysis 
to provide support for public health decision-
making. Overall, the deep learning CNN-based 
cirrhosis prediction system had a broad 
application prospect in clinical practice. The 
results demonstrated that the system exhibited 
good reliability, stability, and accuracy in early 
diagnosis of cirrhosis, personalized treatment, 
and public health management. 
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